Mercurial > pylearn
view algorithms/daa.py @ 476:8fcd0f3d9a17
added a few algorithms
author | Olivier Breuleux <breuleuo@iro.umontreal.ca> |
---|---|
date | Mon, 27 Oct 2008 17:26:00 -0400 |
parents | |
children | b15dad843c8c |
line wrap: on
line source
import theano from theano import tensor as T from theano.tensor import nnet as NN import numpy as N class DenoisingAA(T.RModule): def __init__(self, input = None, regularize = True, tie_weights = True): super(DenoisingAA, self).__init__() # MODEL CONFIGURATION self.regularize = regularize self.tie_weights = tie_weights # ACQUIRE/MAKE INPUT if not input: input = T.matrix('input') self.input = theano.External(input) # HYPER-PARAMETERS self.lr = theano.Member(T.scalar()) # PARAMETERS self.w1 = theano.Member(T.matrix()) if not tie_weights: self.w2 = theano.Member(T.matrix()) else: self.w2 = self.w1.T self.b1 = theano.Member(T.vector()) self.b2 = theano.Member(T.vector()) # REGULARIZATION COST self.regularization = self.build_regularization() ### NOISELESS ### # HIDDEN LAYER self.hidden_activation = T.dot(self.input, self.w1) + self.b1 self.hidden = self.hid_activation_function(self.hidden_activation) # RECONSTRUCTION LAYER self.output_activation = T.dot(self.hidden, self.w2) + self.b2 self.output = self.out_activation_function(self.output_activation) # RECONSTRUCTION COST self.reconstruction_costs = self.build_reconstruction_costs(self.output) self.reconstruction_cost = T.mean(self.reconstruction_costs) # TOTAL COST self.cost = self.reconstruction_cost if self.regularize: self.cost = self.cost + self.regularization ### WITH NOISE ### self.corrupted_input = self.build_corrupted_input() # HIDDEN LAYER self.nhidden_activation = T.dot(self.corrupted_input, self.w1) + self.b1 self.nhidden = self.hid_activation_function(self.nhidden_activation) # RECONSTRUCTION LAYER self.noutput_activation = T.dot(self.nhidden, self.w2) + self.b2 self.noutput = self.out_activation_function(self.noutput_activation) # RECONSTRUCTION COST self.nreconstruction_costs = self.build_reconstruction_costs(self.noutput) self.nreconstruction_cost = T.mean(self.nreconstruction_costs) # TOTAL COST self.ncost = self.nreconstruction_cost if self.regularize: self.ncost = self.ncost + self.regularization # GRADIENTS AND UPDATES if self.tie_weights: self.params = self.w1, self.b1, self.b2 else: self.params = self.w1, self.w2, self.b1, self.b2 gradients = T.grad(self.ncost, self.params) updates = dict((p, p - self.lr * g) for p, g in zip(self.params, gradients)) # INTERFACE METHODS self.update = theano.Method(self.input, self.ncost, updates) self.compute_cost = theano.Method(self.input, self.cost) self.noisify = theano.Method(self.input, self.corrupted_input) self.reconstruction = theano.Method(self.input, self.output) self.representation = theano.Method(self.input, self.hidden) self.reconstruction_through_noise = theano.Method(self.input, [self.corrupted_input, self.noutput]) def _instance_initialize(self, obj, input_size = None, hidden_size = None, seed = None, **init): if (input_size is None) ^ (hidden_size is None): raise ValueError("Must specify hidden_size and target_size or neither.") super(DenoisingAA, self)._instance_initialize(obj, **init) if seed is not None: R = N.random.RandomState(seed) else: R = N.random if input_size is not None: sz = (input_size, hidden_size) inf = 1/N.sqrt(input_size) hif = 1/N.sqrt(hidden_size) obj.w1 = R.uniform(size = sz, low = -inf, high = inf) if not self.tie_weights: obj.w2 = R.uniform(size = list(reversed(sz)), low = -inf, high = inf) obj.b1 = N.zeros(hidden_size) obj.b2 = N.zeros(input_size) if seed is not None: self.seed(seed) obj.__hide__ = ['params'] def build_regularization(self): return T.zero() # no regularization! class SigmoidXEDenoisingAA(DenoisingAA): def build_corrupted_input(self): self.noise_level = theano.Member(T.scalar()) return self.random.binomial(T.shape(self.input), 1, 1 - self.noise_level) * self.input def hid_activation_function(self, activation): return NN.sigmoid(activation) def out_activation_function(self, activation): return NN.sigmoid(activation) def build_reconstruction_costs(self, output): reconstruction_cost_matrix = -(self.input * T.log(output) + (1 - self.input) * T.log(1 - output)) return T.sum(reconstruction_cost_matrix, axis=1) def build_regularization(self): self.l2_coef = theano.Member(T.scalar()) if self.tie_weights: return self.l2_coef * T.sum(self.w1 * self.w1) else: return self.l2_coef * T.sum(self.w1 * self.w1) + T.sum(self.w2 * self.w2) def _instance_initialize(self, obj, input_size = None, hidden_size = None, seed = None, **init): init.setdefault('noise_level', 0) init.setdefault('l2_coef', 0) super(SigmoidXEDenoisingAA, self)._instance_initialize(obj, input_size, hidden_size, seed, **init)