Mercurial > pylearn
view amat.py @ 284:8e923cb2e8fc
renamed file
author | Frederic Bastien <bastienf@iro.umontreal.ca> |
---|---|
date | Fri, 06 Jun 2008 13:52:37 -0400 |
parents | 6e69fb91f3c0 |
children | bd937e845bbb |
line wrap: on
line source
"""load PLearn AMat files""" import sys, numpy, array path_MNIST = '/u/bergstrj/pub/data/mnist.amat' class AMat: """DataSource to access a plearn amat file as a periodic unrandomized stream. Attributes: input -- minibatch of input target -- minibatch of target weight -- minibatch of weight extra -- minitbatch of extra all -- the entire data contents of the amat file n_examples -- the number of training examples in the file AMat stands for Ascii Matri[x,ces] """ marker_size = '#size:' marker_sizes = '#sizes:' marker_col_names = '#:' def __init__(self, path, head=None, update_interval=0, ofile=sys.stdout): """Load the amat at <path> into memory. path - str: location of amat file head - int: stop reading after this many data rows update_interval - int: print '.' to ofile every <this many> lines ofile - file: print status, msgs, etc. to this file """ self.all = None self.input = None self.target = None self.weight = None self.extra = None self.header = False self.header_size = None self.header_rows = None self.header_cols = None self.header_sizes = None self.header_col_names = [] data_started = False data = array.array('d') f = open(path) n_data_lines = 0 len_float_line = None for i,line in enumerate(f): if n_data_lines == head: #we've read enough data, # break even if there's more in the file break if len(line) == 0 or line == '\n': continue if line[0] == '#': if not data_started: #the condition means that the file has a header, and we're on # some header line self.header = True if line.startswith(AMat.marker_size): info = line[len(AMat.marker_size):] self.header_size = [int(s) for s in info.split()] self.header_rows, self.header_cols = self.header_size if line.startswith(AMat.marker_col_names): info = line[len(AMat.marker_col_names):] self.header_col_names = info.split() elif line.startswith(AMat.marker_sizes): info = line[len(AMat.marker_sizes):] self.header_sizes = [int(s) for s in info.split()] else: #the first non-commented line tells us that the header is done data_started = True float_line = [float(s) for s in line.split()] if len_float_line is None: len_float_line = len(float_line) if (self.header_cols is not None) \ and self.header_cols != len_float_line: print >> sys.stderr, \ 'WARNING: header declared %i cols but first line has %i, using %i',\ self.header_cols, len_float_line, len_float_line else: if len_float_line != len(float_line): raise IOError('wrong line length', i, line) data.extend(float_line) n_data_lines += 1 if update_interval > 0 and (ofile is not None) \ and n_data_lines % update_interval == 0: ofile.write('.') ofile.flush() if update_interval > 0: ofile.write('\n') f.close() # convert from array.array to numpy.ndarray nshape = (len(data) / len_float_line, len_float_line) self.all = numpy.frombuffer(data).reshape(nshape) self.n_examples = self.all.shape[0] # assign if self.header_sizes is not None: if len(self.header_sizes) > 4: print >> sys.stderr, 'WARNING: ignoring sizes after 4th in %s' % path leftmost = 0 #here we make use of the fact that if header_sizes has len < 4 # the loop will exit before 4 iterations attrlist = ['input', 'target', 'weight', 'extra'] for attr, ncols in zip(attrlist, self.header_sizes): setattr(self, attr, self.all[:, leftmost:leftmost+ncols]) leftmost += ncols