Mercurial > pylearn
view _test_random_transformation.py @ 432:8e4d2ebd816a
added a test for LinearRegression
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Tue, 29 Jul 2008 11:16:05 -0400 |
parents | 18702ceb2096 |
children |
line wrap: on
line source
from random_transformation import row_random_transformation import unittest from theano import compile from theano import gradient from theano.sparse import _is_dense, _is_sparse, _is_dense_result, _is_sparse_result from theano.sparse import _mtypes, _mtype_to_str from theano.sparse import as_sparse from theano.tensor import as_tensor from theano.scalar import as_scalar import random import numpy.random class T_RowRandomTransformation(unittest.TestCase): def setUp(self): random.seed(44) numpy.random.seed(44) def test_basic(self): rows = 4 cols = 20 fakeseed = 0 length = 3 md = numpy.random.rand(rows, cols) for mtype in _mtypes: m = as_sparse(mtype(md)) o = row_random_transformation(m, length, initial_seed=fakeseed) y = compile.eval_outputs([o]) expected = "[[ 0.88239119 1.03244463 -1.29297503]\n [ 0.02644961 1.50119695 -0.025081 ]\n [-0.60741013 1.25424625 0.30119422]\n [-1.08659967 -0.35531544 -1.38915467]]" self.failUnless(str(y) == expected) def test_length(self): """ Test that if length is increased, we obtain the same results (except longer). """ for i in range(10): mtype = random.choice(_mtypes) rows = random.randint(1, 20) cols = random.randint(1, 20) fakeseed = random.randint(0, 100) length = random.randint(1, 10) extralength = random.randint(1, 10) m = as_sparse(mtype(numpy.random.rand(rows, cols))) o1 = row_random_transformation(m, length, initial_seed=fakeseed) o2 = row_random_transformation(m, length + extralength, initial_seed=fakeseed) y1 = compile.eval_outputs([o1]) y2 = compile.eval_outputs([o2]) self.failUnless((y1 == y2[:,:length]).all()) def test_permute(self): """ Test that if the order of the rows is permuted, we obtain the same results. """ for i in range(10): mtype = random.choice(_mtypes) rows = random.randint(2, 20) cols = random.randint(1, 20) fakeseed = random.randint(0, 100) length = random.randint(1, 10) permute = numpy.random.permutation(rows) m1 = numpy.random.rand(rows, cols) m2 = m1[permute] for r in range(rows): self.failUnless((m2[r] == m1[permute[r]]).all()) s1 = as_sparse(mtype(m1)) s2 = as_sparse(mtype(m2)) o1 = row_random_transformation(s1, length, initial_seed=fakeseed) o2 = row_random_transformation(s2, length, initial_seed=fakeseed) y1 = compile.eval_outputs([o1]) y2 = compile.eval_outputs([o2]) self.failUnless(y1.shape == y2.shape) for r in range(rows): self.failUnless((y2[r] == y1[permute[r]]).all()) if __name__ == '__main__': unittest.main()