view sandbox/sparse_random_autoassociator/model.py @ 492:6dfdcee64e9b

merge
author Olivier Breuleux <breuleuo@iro.umontreal.ca>
date Tue, 28 Oct 2008 11:39:47 -0400
parents 36baeb7125a4
children
line wrap: on
line source

"""
The model for an autoassociator for sparse inputs, using Ronan Collobert + Jason
Weston's sampling trick (2008).
"""

from graph import trainfn
import parameters

import globals
from globals import LR

import numpy
import random
random.seed(globals.SEED)

def _select_indices(instance):
    """
    Choose nonzero and zero indices (feature columns) of the instance.
    We select B{all} nonzero indices.
    We select L{globals.ZERO_SAMPLE_SIZE} zero indices randomly,
    without replacement.
    @bug: If there are not ZERO_SAMPLE_SIZE zeroes, we will enter
    an endless loop.
    @return: (nonzero_indices, zero_indices)
    """
    # Get the nonzero indices
    nonzero_indices = instance.keys()
    nonzero_indices.sort()

    # Get the zero indices
    # @bug: If there are not ZERO_SAMPLE_SIZE zeroes, we will enter an endless loop.
    zero_indices = []
    while len(zero_indices) < globals.ZERO_SAMPLE_SIZE:
        idx = random.randint(0, globals.INPUT_DIMENSION - 1)
        if idx in nonzero_indices or idx in zero_indices: continue
        zero_indices.append(idx)
    zero_indices.sort()

    return (nonzero_indices, zero_indices)

class Model:
    def __init__(self):
        self.parameters = parameters.Parameters(randomly_initialize=True)

    def update(self, instance):
        """
        Update the L{Model} using one training instance.
        @param instance: A dict from feature index to (non-zero) value.
        @todo: Should assert that nonzero_indices and zero_indices
        are correct (i.e. are truly nonzero/zero).
        """
        (nonzero_indices, zero_indices) = _select_indices(instance)
        # No update if there aren't any non-zeros.
        if len(nonzero_indices) == 0: return
        xnonzero = numpy.asarray([instance[idx] for idx in nonzero_indices])
        print
        print "xnonzero:", xnonzero

        (ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = trainfn(xnonzero, self.parameters.w1[nonzero_indices, :], self.parameters.b1, self.parameters.w2[:, nonzero_indices], self.parameters.w2[:, zero_indices], self.parameters.b2[nonzero_indices], self.parameters.b2[zero_indices])
        print "OLD ynonzero:", ynonzero
        print "OLD yzero:", yzero
        print "OLD total loss:", loss

        # SGD update
        self.parameters.w1[nonzero_indices, :]  -= LR * gw1nonzero
        self.parameters.b1						-= LR * gb1
        self.parameters.w2[:, nonzero_indices]  -= LR * gw2nonzero
        self.parameters.w2[:, zero_indices]		-= LR * gw2zero
        self.parameters.b2[nonzero_indices]		-= LR * gb2nonzero
        self.parameters.b2[zero_indices]		-= LR * gb2zero

        # Recompute the loss, to make sure it's descreasing
        (ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = trainfn(xnonzero, self.parameters.w1[nonzero_indices, :], self.parameters.b1, self.parameters.w2[:, nonzero_indices], self.parameters.w2[:, zero_indices], self.parameters.b2[nonzero_indices], self.parameters.b2[zero_indices])
        print "NEW ynonzero:", ynonzero
        print "NEW yzero:", yzero
        print "NEW total loss:", loss