Mercurial > pylearn
view _test_dataset.py @ 492:6dfdcee64e9b
merge
author | Olivier Breuleux <breuleuo@iro.umontreal.ca> |
---|---|
date | Tue, 28 Oct 2008 11:39:47 -0400 |
parents | 18702ceb2096 |
children | 82da179d95b2 |
line wrap: on
line source
#!/bin/env python from dataset import * from math import * import numpy, unittest, sys #from misc import * from lookup_list import LookupList def have_raised(to_eval, **var): have_thrown = False try: eval(to_eval) except : have_thrown = True return have_thrown def have_raised2(f, *args, **kwargs): have_thrown = False try: f(*args, **kwargs) except : have_thrown = True return have_thrown def test1(): print "test1" global a,ds a = numpy.random.rand(10,4) print a ds = ArrayDataSet(a,{'x':slice(3),'y':3,'z':[0,2]}) print "len(ds)=",len(ds) assert(len(ds)==10) print "example 0 = ",ds[0] # assert print "x=",ds["x"] print "x|y" for x,y in ds("x","y"): print x,y minibatch_iterator = ds.minibatches(fieldnames=['z','y'],n_batches=1,minibatch_size=3,offset=4) minibatch = minibatch_iterator.__iter__().next() print "minibatch=",minibatch for var in minibatch: print "var=",var print "take a slice and look at field y",ds[1:6:2]["y"] del a,ds,x,y,minibatch_iterator,minibatch,var def test_iterate_over_examples(array,ds): #not in doc!!! i=0 for example in range(len(ds)): wanted = array[example][:3] returned = ds[example]['x'] if (wanted != returned).all(): print 'returned:', returned print 'wanted:', wanted assert (ds[example]['x']==array[example][:3]).all() assert ds[example]['y']==array[example][3] assert (ds[example]['z']==array[example][[0,2]]).all() i+=1 assert i==len(ds) del example,i # - for example in dataset: i=0 for example in ds: assert len(example)==3 assert (example['x']==array[i][:3]).all() assert example['y']==array[i][3] assert (example['z']==array[i][0:3:2]).all() assert (numpy.append(example['x'],example['y'])==array[i]).all() i+=1 assert i==len(ds) del example,i # - for val1,val2,... in dataset: i=0 for x,y,z in ds: assert (x==array[i][:3]).all() assert y==array[i][3] assert (z==array[i][0:3:2]).all() assert (numpy.append(x,y)==array[i]).all() i+=1 assert i==len(ds) del x,y,z,i # - for example in dataset(field1, field2,field3, ...): i=0 for example in ds('x','y','z'): assert len(example)==3 assert (example['x']==array[i][:3]).all() assert example['y']==array[i][3] assert (example['z']==array[i][0:3:2]).all() assert (numpy.append(example['x'],example['y'])==array[i]).all() i+=1 assert i==len(ds) del example,i i=0 for example in ds('y','x'): assert len(example)==2 assert (example['x']==array[i][:3]).all() assert example['y']==array[i][3] assert (numpy.append(example['x'],example['y'])==array[i]).all() i+=1 assert i==len(ds) del example,i # - for val1,val2,val3 in dataset(field1, field2,field3): i=0 for x,y,z in ds('x','y','z'): assert (x==array[i][:3]).all() assert y==array[i][3] assert (z==array[i][0:3:2]).all() assert (numpy.append(x,y)==array[i]).all() i+=1 assert i==len(ds) del x,y,z,i i=0 for y,x in ds('y','x',): assert (x==array[i][:3]).all() assert y==array[i][3] assert (numpy.append(x,y)==array[i]).all() i+=1 assert i==len(ds) del x,y,i def test_minibatch_size(minibatch,minibatch_size,len_ds,nb_field,nb_iter_finished): ##full minibatch or the last minibatch for idx in range(nb_field): test_minibatch_field_size(minibatch[idx],minibatch_size,len_ds,nb_iter_finished) del idx def test_minibatch_field_size(minibatch_field,minibatch_size,len_ds,nb_iter_finished): assert len(minibatch_field)==minibatch_size or ((nb_iter_finished*minibatch_size+len(minibatch_field))==len_ds and len(minibatch_field)<minibatch_size) # - for minibatch in dataset.minibatches([field1, field2, ...],minibatch_size=N): i=0 mi=0 size=3 m=ds.minibatches(['x','z'], minibatch_size=size) assert hasattr(m,'__iter__') for minibatch in m: assert isinstance(minibatch,LookupList) assert len(minibatch)==2 test_minibatch_size(minibatch,size,len(ds),2,mi) if type(ds)==ArrayDataSet: assert (minibatch[0][:,::2]==minibatch[1]).all() else: for j in xrange(len(minibatch[0])): (minibatch[0][j][::2]==minibatch[1][j]).all() mi+=1 i+=len(minibatch[0]) assert i==(len(ds)/size)*size assert mi==(len(ds)/size) del minibatch,i,m,mi,size i=0 mi=0 size=3 m=ds.minibatches(['x','y'], minibatch_size=size) assert hasattr(m,'__iter__') for minibatch in m: assert isinstance(minibatch,LookupList) assert len(minibatch)==2 test_minibatch_size(minibatch,size,len(ds),2,mi) mi+=1 for id in range(len(minibatch[0])): assert (numpy.append(minibatch[0][id],minibatch[1][id])==array[i]).all() i+=1 assert i==(len(ds)/size)*size assert mi==(len(ds)/size) del minibatch,i,id,m,mi,size # - for mini1,mini2,mini3 in dataset.minibatches([field1, field2, field3], minibatch_size=N): i=0 mi=0 size=3 m=ds.minibatches(['x','z'], minibatch_size=size) assert hasattr(m,'__iter__') for x,z in m: test_minibatch_field_size(x,size,len(ds),mi) test_minibatch_field_size(z,size,len(ds),mi) for id in range(len(x)): assert (x[id][::2]==z[id]).all() i+=1 mi+=1 assert i==(len(ds)/size)*size assert mi==(len(ds)/size) del x,z,i,m,mi,size i=0 mi=0 size=3 m=ds.minibatches(['x','y'], minibatch_size=3) assert hasattr(m,'__iter__') for x,y in m: assert len(x)==size assert len(y)==size test_minibatch_field_size(x,size,len(ds),mi) test_minibatch_field_size(y,size,len(ds),mi) mi+=1 for id in range(len(x)): assert (numpy.append(x[id],y[id])==array[i]).all() i+=1 assert i==(len(ds)/size)*size assert mi==(len(ds)/size) del x,y,i,id,m,mi,size #not in doc i=0 size=3 m=ds.minibatches(['x','y'],n_batches=1,minibatch_size=size,offset=4) assert hasattr(m,'__iter__') for x,y in m: assert len(x)==size assert len(y)==size for id in range(size): assert (numpy.append(x[id],y[id])==array[i+4]).all() i+=1 assert i==size del x,y,i,id,m,size i=0 size=3 m=ds.minibatches(['x','y'],n_batches=2,minibatch_size=size,offset=4) assert hasattr(m,'__iter__') for x,y in m: assert len(x)==size assert len(y)==size for id in range(size): assert (numpy.append(x[id],y[id])==array[i+4]).all() i+=1 assert i==2*size del x,y,i,id,m,size i=0 size=3 m=ds.minibatches(['x','y'],n_batches=20,minibatch_size=size,offset=4) assert hasattr(m,'__iter__') for x,y in m: assert len(x)==size assert len(y)==size for id in range(size): assert (numpy.append(x[id],y[id])==array[(i+4)%array.shape[0]]).all() i+=1 assert i==2*size # should not wrap del x,y,i,id,size assert have_raised2(ds.minibatches,['x','y'],n_batches=1,minibatch_size=len(array)+1,offset=0) assert not have_raised2(ds.minibatches,['x','y'],n_batches=1,minibatch_size=len(array),offset=0) def test_ds_iterator(array,iterator1,iterator2,iterator3): l=len(iterator1) i=0 for x,y in iterator1: assert (x==array[i][:3]).all() assert y==array[i][3] assert (numpy.append(x,y)==array[i]).all() i+=1 assert i==l i=0 for y,z in iterator2: assert y==array[i][3] assert (z==array[i][0:3:2]).all() i+=1 assert i==l i=0 for x,y,z in iterator3: assert (x==array[i][:3]).all() assert y==array[i][3] assert (z==array[i][0:3:2]).all() assert (numpy.append(x,y)==array[i]).all() i+=1 assert i==l def test_getitem(array,ds): def test_ds(orig,ds,index): i=0 assert isinstance(ds,LookupList) assert len(ds)==3 assert len(ds[0])==len(index) # for x,z,y in ds('x','z','y'): for idx in index: assert (orig[idx]['x']==array[idx][:3]).all() assert (orig[idx]['x']==ds['x'][i]).all() assert orig[idx]['y']==array[idx][3] assert (orig[idx]['y']==ds['y'][i]).all() # why does it crash sometimes? assert (orig[idx]['z']==array[idx][0:3:2]).all() assert (orig[idx]['z']==ds['z'][i]).all() i+=1 del i ds[0] if len(ds)>2: ds[:1] ds[1:1] ds[1:1:1] if len(ds)>5: ds[[1,2,3]] for x in ds: pass #ds[:n] returns a LookupList with the n first examples. ds2=ds[:3] test_ds(ds,ds2,index=[0,1,2]) del ds2 #ds[i:j] returns a LookupList with examples i,i+1,...,j-1. ds2=ds[1:3] test_ds(ds,ds2,index=[1,2]) del ds2 #ds[i1:i2:s] returns a LookupList with the examples i1,i1+s,...i2-s. ds2=ds[1:7:2] test_ds(ds,ds2,[1,3,5]) del ds2 #ds[i] returns the (i+1)-th example of the dataset. ds2=ds[5] assert isinstance(ds2,Example) assert have_raised("var['ds']["+str(len(ds))+"]",ds=ds) # index not defined assert not have_raised("var['ds']["+str(len(ds)-1)+"]",ds=ds) del ds2 #ds[[i1,i2,...in]]# returns a ds with examples i1,i2,...in. ds2=ds[[4,7,2,8]] # assert isinstance(ds2,DataSet) test_ds(ds,ds2,[4,7,2,8]) del ds2 #ds.<property># returns the value of a property associated with #the name <property>. The following properties should be supported: # - 'description': a textual description or name for the ds # - 'fieldtypes': a list of types (one per field) #* ds1 | ds2 | ds3 == ds.hstack([ds1,ds2,ds3])#???? #assert hstack([ds('x','y'),ds('z')])==ds #hstack([ds('z','y'),ds('x')])==ds assert have_raised2(hstack,[ds('x'),ds('x')]) assert have_raised2(hstack,[ds('y','x'),ds('x')]) assert not have_raised2(hstack,[ds('x'),ds('y')]) # i=0 # for example in hstack([ds('x'),ds('y'),ds('z')]): # example==ds[i] # i+=1 # del i,example #* ds1 & ds2 & ds3 == ds.vstack([ds1,ds2,ds3])#???? def test_subset(array,ds): def test_ds(orig,ds,index): i=0 assert isinstance(ds2,DataSet) assert len(ds)==len(index) for x,z,y in ds('x','z','y'): assert (orig[index[i]]['x']==array[index[i]][:3]).all() assert (orig[index[i]]['x']==x).all() assert orig[index[i]]['y']==array[index[i]][3] assert orig[index[i]]['y']==y assert (orig[index[i]]['z']==array[index[i]][0:3:2]).all() assert (orig[index[i]]['z']==z).all() i+=1 del i ds[0] if len(ds)>2: ds[:1] ds[1:1] ds[1:1:1] if len(ds)>5: ds[[1,2,3]] for x in ds: pass #ds[:n] returns a dataset with the n first examples. ds2=ds.subset[:3] test_ds(ds,ds2,index=[0,1,2]) # del ds2 #ds[i1:i2:s]# returns a ds with the examples i1,i1+s,...i2-s. ds2=ds.subset[1:7:2] test_ds(ds,ds2,[1,3,5]) # del ds2 # #ds[i] # ds2=ds.subset[5] # assert isinstance(ds2,Example) # assert have_raised("var['ds']["+str(len(ds))+"]",ds=ds) # index not defined # assert not have_raised("var['ds']["+str(len(ds)-1)+"]",ds=ds) # del ds2 #ds[[i1,i2,...in]]# returns a ds with examples i1,i2,...in. ds2=ds.subset[[4,7,2,8]] test_ds(ds,ds2,[4,7,2,8]) # del ds2 #ds.<property># returns the value of a property associated with #the name <property>. The following properties should be supported: # - 'description': a textual description or name for the ds # - 'fieldtypes': a list of types (one per field) #* ds1 | ds2 | ds3 == ds.hstack([ds1,ds2,ds3])#???? #assert hstack([ds('x','y'),ds('z')])==ds #hstack([ds('z','y'),ds('x')])==ds assert have_raised2(hstack,[ds('x'),ds('x')]) assert have_raised2(hstack,[ds('y','x'),ds('x')]) assert not have_raised2(hstack,[ds('x'),ds('y')]) # i=0 # for example in hstack([ds('x'),ds('y'),ds('z')]): # example==ds[i] # i+=1 # del i,example #* ds1 & ds2 & ds3 == ds.vstack([ds1,ds2,ds3])#???? def test_fields_fct(ds): #@todo, fill correctly assert len(ds.fields())==3 i=0 v=0 for field in ds.fields(): for field_value in field: # iterate over the values associated to that field for all the ds examples v+=1 i+=1 assert i==3 assert v==3*10 del i,v i=0 v=0 for field in ds('x','z').fields(): i+=1 for val in field: v+=1 assert i==2 assert v==2*10 del i,v i=0 v=0 for field in ds.fields('x','y'): i+=1 for val in field: v+=1 assert i==2 assert v==2*10 del i,v i=0 v=0 for field_examples in ds.fields(): for example_value in field_examples: v+=1 i+=1 assert i==3 assert v==3*10 del i,v assert ds == ds.fields().examples() assert len(ds('x','y').fields()) == 2 assert len(ds('x','z').fields()) == 2 assert len(ds('y').fields()) == 1 del field def test_overrides(ds) : """ Test for examples that an override __getitem__ acts as the one in DataSet """ def ndarray_list_equal(nda,l) : """ Compares if a ndarray is the same as the list. Do it by converting the list into an numpy.ndarray, if possible """ try : l = numpy.asmatrix(l) except : return False return smart_equal(nda,l) def smart_equal(a1,a2) : """ Handles numpy.ndarray, LookupList, and basic containers """ if not isinstance(a1,type(a2)) and not isinstance(a2,type(a1)): #special case: matrix vs list of arrays if isinstance(a1,numpy.ndarray) : return ndarray_list_equal(a1,a2) elif isinstance(a2,numpy.ndarray) : return ndarray_list_equal(a2,a1) return False # compares 2 numpy.ndarray if isinstance(a1,numpy.ndarray): if len(a1.shape) != len(a2.shape): return False for k in range(len(a1.shape)) : if a1.shape[k] != a2.shape[k]: return False return (a1==a2).all() # compares 2 lookuplists if isinstance(a1,LookupList) : if len(a1._names) != len(a2._names) : return False for k in a1._names : if k not in a2._names : return False if not smart_equal(a1[k],a2[k]) : return False return True # compares 2 basic containers if hasattr(a1,'__len__'): if len(a1) != len(a2) : return False for k in range(len(a1)) : if not smart_equal(a1[k],a2[k]): return False return True # try basic equals return a1 is a2 def mask(ds) : class TestOverride(type(ds)): def __init__(self,ds) : self.ds = ds def __getitem__(self,key) : res1 = self.ds[key] res2 = DataSet.__getitem__(ds,key) assert smart_equal(res1,res2) return res1 return TestOverride(ds) # test getitem ds2 = mask(ds) for k in range(10): res = ds2[k] res = ds2[1:len(ds):3] def test_all(array,ds): assert len(ds)==10 test_iterate_over_examples(array, ds) test_overrides(ds) test_getitem(array, ds) test_subset(array, ds) test_ds_iterator(array,ds('x','y'),ds('y','z'),ds('x','y','z')) test_fields_fct(ds) class T_DataSet(unittest.TestCase): def test_ArrayDataSet(self): #don't test stream #tested only with float value #don't always test with y #don't test missing value #don't test with tuple #don't test proterties a2 = numpy.random.rand(10,4) ds = ArrayDataSet(a2,{'x':slice(3),'y':3,'z':[0,2]})###???tuple not tested ds = ArrayDataSet(a2,Example(['x','y','z'],[slice(3),3,[0,2]]))###???tuple not tested #assert ds==a? should this work? test_all(a2,ds) del a2, ds def test_CachedDataSet(self): a = numpy.random.rand(10,4) ds1 = ArrayDataSet(a,Example(['x','y','z'],[slice(3),3,[0,2]]))###???tuple not tested ds2 = CachedDataSet(ds1) ds3 = CachedDataSet(ds1,cache_all_upon_construction=True) test_all(a,ds2) test_all(a,ds3) del a,ds1,ds2,ds3 def test_DataSetFields(self): raise NotImplementedError() def test_ApplyFunctionDataSet(self): a = numpy.random.rand(10,4) a2 = a+1 ds1 = ArrayDataSet(a,Example(['x','y','z'],[slice(3),3,[0,2]]))###???tuple not tested ds2 = ApplyFunctionDataSet(ds1,lambda x,y,z: (x+1,y+1,z+1), ['x','y','z'],minibatch_mode=False) ds3 = ApplyFunctionDataSet(ds1,lambda x,y,z: (numpy.array(x)+1,numpy.array(y)+1,numpy.array(z)+1), ['x','y','z'], minibatch_mode=True) test_all(a2,ds2) test_all(a2,ds3) del a,ds1,ds2,ds3 def test_FieldsSubsetDataSet(self): a = numpy.random.rand(10,4) ds = ArrayDataSet(a,Example(['x','y','z','w'],[slice(3),3,[0,2],0])) ds = FieldsSubsetDataSet(ds,['x','y','z']) test_all(a,ds) del a, ds def test_RenamedFieldsDataSet(self): a = numpy.random.rand(10,4) ds = ArrayDataSet(a,Example(['x1','y1','z1','w1'],[slice(3),3,[0,2],0])) ds = RenamedFieldsDataSet(ds,['x1','y1','z1'],['x','y','z']) test_all(a,ds) del a, ds def test_MinibatchDataSet(self): raise NotImplementedError() def test_HStackedDataSet(self): raise NotImplementedError() def test_VStackedDataSet(self): raise NotImplementedError() def test_ArrayFieldsDataSet(self): raise NotImplementedError() class T_Exotic1(unittest.TestCase): class DataSet(DataSet): """ Dummy dataset, where one field is a ndarray of variables size. """ def __len__(self) : return 100 def fieldNames(self) : return 'input','target','name' def minibatches_nowrap(self,fieldnames,minibatch_size,n_batches,offset): class MultiLengthDataSetIterator(object): def __init__(self,dataset,fieldnames,minibatch_size,n_batches,offset): if fieldnames is None: fieldnames = dataset.fieldNames() self.minibatch = Example(fieldnames,range(len(fieldnames))) self.dataset, self.minibatch_size, self.current = dataset, minibatch_size, offset def __iter__(self): return self def next(self): for k in self.minibatch._names : self.minibatch[k] = [] for ex in range(self.minibatch_size) : if 'input' in self.minibatch._names: self.minibatch['input'].append( numpy.array( range(self.current + 1) ) ) if 'target' in self.minibatch._names: self.minibatch['target'].append( self.current % 2 ) if 'name' in self.minibatch._names: self.minibatch['name'].append( str(self.current) ) self.current += 1 return self.minibatch return MultiLengthDataSetIterator(self,fieldnames,minibatch_size,n_batches,offset) def test_ApplyFunctionDataSet(self): ds = T_Exotic1.DataSet() dsa = ApplyFunctionDataSet(ds,lambda x,y,z: (x[-1],y*10,int(z)),['input','target','name'],minibatch_mode=False) #broken!!!!!! for k in range(len(dsa)): res = dsa[k] self.failUnless(ds[k]('input')[0][-1] == res('input')[0] , 'problem in first applied function') res = dsa[33:96:3] def test_CachedDataSet(self): ds = T_Exotic1.DataSet() dsc = CachedDataSet(ds) for k in range(len(dsc)) : self.failUnless(numpy.all( dsc[k]('input')[0] == ds[k]('input')[0] ) , (dsc[k],ds[k]) ) res = dsc[:] if __name__=='__main__': tests = [] debug=False if len(sys.argv)==1: unittest.main() else: assert sys.argv[1]=="--debug" for arg in sys.argv[2:]: tests.append(arg) if tests: unittest.TestSuite(map(T_DataSet, tests)).debug() else: module = __import__("_test_dataset") tests = unittest.TestLoader().loadTestsFromModule(module) tests.debug()