Mercurial > pylearn
view doc/v2_planning/learn_meeting.py @ 1164:53d11eafdaa9
ignore more file
author | Frederic Bastien <nouiz@nouiz.org> |
---|---|
date | Fri, 17 Sep 2010 13:56:22 -0400 |
parents | 8c448829db30 |
children |
line wrap: on
line source
def bagging(learner_factory): for i in range(N): learner_i = learner_factory.new() # todo: get dataset_i ?? learner_i.use_dataset(dataset_i) learner_i.train() ''' List of tasks types: Attributes sequential spatial structured semi-supervised missing-values Supervised (x,y) classification regression probabilistic classification ranking conditional density estimation collaborative filtering ordinal regression ?= ranking Unsupervised (x) de-noising feature learning ( transformation ) PCA, DAA density estimation inference Other generation (sampling) structure learning ??? Notes on metrics & statistics: - some are applied to an example, others on a batch - most statistics are on the dataset ''' class Learner(Object): #def use_dataset(dataset) # return a dictionary of hyperparameters names(keys) # and value(values) def get_hyper_parameters() def set_hyper_parameters(dictionary) # Ver B def eval(dataset) def predict(dataset) # Trainable def train(dataset) # train until complition # Incremental def use_dataset(dataset) def adapt(n_steps =1) def has_converged() # class HyperLearner(Learner): ### def get_hyper_parameter_distribution(name) def set_hyper_parameters_distribution(dictionary)