Mercurial > pylearn
view pylearn/datasets/nist_sd.py @ 896:4e3a3d9fef43
Dataset: added preprocess attribute.
author | Pierre-Antoine Manzagol <pierre.antoine.manzagol@gmail.com> |
---|---|
date | Tue, 09 Feb 2010 20:14:46 -0500 |
parents | 257a39cce72c |
children | 2f8614685be3 |
line wrap: on
line source
""" Provides a Dataset to access the nist digits_reshuffled dataset. """ import os, numpy from pylearn.io import filetensor as ft from pylearn.datasets.config import data_root # config from pylearn.datasets.dataset import Dataset def nist_to_float(x): return x / 255.0 def load(dataset = 'train', attribute = 'data'): """Load the filetensor corresponding to the set and attribute. :param dataset: str that is 'train', 'valid' or 'test' :param attribute: str that is 'data' or 'labels' """ fn = 'digits_reshuffled_' + dataset + '_' + attribute + '.ft' fn = os.path.join(data_root(), 'nist', 'by_class', 'digits_reshuffled', fn) fd = open(fn) data = ft.read(fd) fd.close() return data def train_valid_test(ntrain=285661, nvalid=58646, ntest=58646, path=None): """ Load the nist reshuffled digits dataset as a Dataset. @note: the examples are uint8 and the labels are int32. @todo: possibility of loading part of the data. """ rval = Dataset() # rval.n_classes = 10 rval.img_shape = (32,32) rval.preprocess = nist_to_float # train examples = load(dataset = 'train', attribute = 'data') labels = load(dataset = 'train', attribute = 'labels') rval.train = Dataset.Obj(x=examples[:ntrain], y=labels[:ntrain]) # valid examples = load(dataset = 'valid', attribute = 'data') labels = load(dataset = 'valid', attribute = 'labels') rval.valid = Dataset.Obj(x=examples[:nvalid], y=labels[:nvalid]) # test examples = load(dataset = 'test', attribute = 'data') labels = load(dataset = 'test', attribute = 'labels') rval.test = Dataset.Obj(x=examples[:ntest], y=labels[:ntest]) return rval