Mercurial > pylearn
view algorithms/stacker.py @ 518:4aa7f74ea93f
init dataset
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Wed, 12 Nov 2008 12:36:09 -0500 |
parents | 2b0e10ac6929 |
children |
line wrap: on
line source
# for example in examples: # repr = example # for layer in stacked.layers: # layer.update(repr) # repr = layer.representation(repr) import theano from theano import tensor as T import sys import numpy as N class Stacker(T.RModule): """ @note: Assumes some names in the layers: input, cost, lr, and update @todo: Maybe compile functions on demand, rather than immediately. """ def __init__(self, submodules, input = None, regularize = False): super(Stacker, self).__init__() current = input layers = [] for i, (submodule, outname) in enumerate(submodules): layer = submodule(current, regularize = regularize) layers.append(layer) current = layer[outname] self.layers = layers self.input = self.layers[0].input self.output = current representation = [] local_update = [] global_update = [] to_update = [] all_kits = [] for layer, (submodule, outname) in zip(layers, submodules): u = layer.update u.resolve_all() to_update += u.updates.keys() all_kits += u.kits # the input is the whole deep model's input instead of the layer's own # input (which is previous_layer[outname]) inputs = [self.input] + u.inputs[1:] method = theano.Method(inputs, u.outputs, u.updates, u.kits) local_update.append(method) global_update.append( theano.Method(inputs, u.outputs, # we update the params of the previous layers too but wrt # this layer's cost dict((param, param - layer.lr * T.grad(layer.cost, param)) for param in to_update), list(all_kits))) representation.append(theano.Method(self.input, layer[outname])) # @todo: Add diagnostics # self.diagnose_from_input = Method([self.input], self.layers[0].diagnose.outputs + self.layers[1].diagnose.outputs ... self.local_update = local_update self.global_update = global_update self.representation = representation self.update = self.global_update[-1] self.compute = theano.Method(self.input, self.output) ll = self.layers[-1] for name, method in ll.components_map(): if isinstance(method, theano.Method) and not hasattr(self, name): m = method.dup() m.resolve_all() m.inputs = [self.input if x is ll.input else x for x in m.inputs] setattr(self, name, m) def _instance_initialize(self, obj, nunits = None, lr = 0.01, seed = None, **kwargs): super(Stacker, self)._instance_initialize(obj, **kwargs) if seed is not None: R = N.random.RandomState(seed) else: R = N.random for layer in obj.layers: if layer.lr is None: layer.lr = lr if nunits: obj.input_dimension = nunits[0] obj.output_dimension = nunits[-1] if len(nunits) != len(obj.layers) + 1: raise ValueError('You should give exactly one more unit numbers as there are layers.') for ni, no, layer in zip(nunits[:-1], nunits[1:], obj.layers): if seed is not None: layer.initialize(ni, no, seed = R.random_integers(sys.maxint - 1)) else: layer.initialize(ni, no) if seed is not None: obj.seed(seed) def _instance_flops_approx(self, obj): rval = 0 for layer in obj.layers: rval += layer.flops_approx() return rval