view learner.py @ 217:44dd9b6448c5

harmless typo in ScalarSoftplus.c_code
author James Bergstra <bergstrj@iro.umontreal.ca>
date Thu, 22 May 2008 19:08:46 -0400
parents bd728c83faff
children 14b9779622f9
line wrap: on
line source



from exceptions import *
from dataset import AttributesHolder

class LearningAlgorithm(object):
    """
    Base class for learning algorithms, provides an interface
    that allows various algorithms to be applicable to generic learning
    algorithms. It is only given here to define the expected semantics.

    A L{Learner} can be seen as a learning algorithm, a function that when
    applied to training data returns a learned function (which is an object that
    can be applied to other data and return some output data).

    There are two main ways of using a learning algorithms, and some learning
    algorithms only support one of them. The first is the way of the standard
    machine learning framework, in which a learning algorithm is applied
    to a training dataset, 

       model = learning_algorithm(training_set)
        
    resulting in a fully trained model that can be applied to another dataset:

        output_dataset = model(input_dataset)

    Note that the application of a dataset has no side-effect on the model.
    In that example, the training set may for example have 'input' and 'target'
    fields while the input dataset may have only 'input' (or both 'input' and
    'target') and the output dataset would contain some default output fields defined
    by the learning algorithm (e.g. 'output' and 'error').

    The second way of using a learning algorithm is in the online or
    adaptive framework, where the training data are only revealed in pieces
    (maybe one example or a batch of example at a time):

       model = learning_algorithm()

    results in a fresh model. The model can be adapted by presenting
    it with some training data,

       model.update(some_training_data)
       ...
       model.update(some_more_training_data)
       ...
       model.update(yet_more_training_data)

    and at any point one can use the model to perform some computation:
    
       output_dataset = model(input_dataset)

    """

    def __init__(self): pass

    def __call__(self, training_dataset=None):
        """
        Return a LearnerModel, either fresh (if training_dataset is None) or fully trained (otherwise).
        """
        raise AbstractFunction()
    
class LearnerModel(AttributesHolder):
    """
    LearnerModel is a base class for models returned by instances of a LearningAlgorithm subclass.
    It is only given here to define the expected semantics.
    """
    def __init__(self):
        pass

    def update(self,training_set,train_stats_collector=None):
        """
        Continue training a learner, with the evidence provided by the given training set.
        Hence update can be called multiple times. This is the main method used for training in the
        on-line setting or the sequential (Bayesian or not) settings.

        This function has as side effect that self(data) will behave differently,
        according to the adaptation achieved by update().

        The user may optionally provide a training L{StatsCollector} that is used to record
        some statistics of the outputs computed during training. It is update(d) during
        training.
        """
        raise AbstractFunction()
    
    def __call__(self,input_dataset,output_fieldnames=None,
                 test_stats_collector=None,copy_inputs=False,
                 put_stats_in_output_dataset=True,
                 output_attributes=[]):
        """
        A trained or partially trained L{Model} can be used with
        with one or more calls to it. The argument is an input L{DataSet} (possibly
        containing a single example) and the result is an output L{DataSet} of the same length.
        If output_fieldnames is specified, it may be use to indicate which fields should
        be constructed in the output L{DataSet} (for example ['output','classification_error']).
        Otherwise, some default output fields are produced (possibly depending on the input
        fields available in the input_dataset).
        Optionally, if copy_inputs, the input fields (of the input_dataset) can be made
        visible in the output L{DataSet} returned by this method.
        Optionally, attributes of the learner can be copied in the output dataset,
        and statistics computed by the stats collector also put in the output dataset.
        Note the distinction between fields (which are example-wise quantities, e.g. 'input')
        and attributes (which are not, e.g. 'regularization_term').
        """
        raise AbstractFunction()