Mercurial > pylearn
view pmat.py @ 474:40c8a46b3da7
added Stopper.find_min
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Thu, 23 Oct 2008 18:05:46 -0400 |
parents | c2f17f231960 |
children |
line wrap: on
line source
## Automatically adapted for numpy.numarray Jun 13, 2007 by python_numarray_to_numpy (-xsm) # PMat.py # Copyright (C) 2005 Pascal Vincent # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. The name of the authors may not be used to endorse or promote # products derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN # NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED # TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # This file is part of the PLearn library. For more information on the PLearn # library, go to the PLearn Web site at www.plearn.org # Author: Pascal Vincent #import numarray, sys, os, os.path import numpy.numarray, sys, os, os.path import fpconst def array_columns( a, cols ): indices = None if isinstance( cols, int ): indices = [ cols ] elif isinstance( cols, slice ): #print cols indices = range( *cols.indices(cols.stop) ) else: indices = list( cols ) return numpy.numarray.take(a, indices, axis=1) def load_pmat_as_array(fname): s = file(fname,'rb').read() formatstr = s[0:64] datastr = s[64:] structuretype, l, w, data_type, endianness = formatstr.split() if data_type=='DOUBLE': elemtype = 'd' elif data_type=='FLOAT': elemtype = 'f' else: raise ValueError('Invalid data type in file header: '+data_type) if endianness=='LITTLE_ENDIAN': byteorder = 'little' elif endianness=='BIG_ENDIAN': byteorder = 'big' else: raise ValueError('Invalid endianness in file header: '+endianness) l = int(l) w = int(w) X = numpy.numarray.fromstring(datastr,elemtype, shape=(l,w) ) if byteorder!=sys.byteorder: X.byteswap(True) return X def load_pmat_as_array_dataset(fname): import dataset,lookup_list #load the pmat as array a=load_pmat_as_array(fname) #load the fieldnames fieldnames = [] fieldnamefile = os.path.join(fname+'.metadata','fieldnames') if os.path.isfile(fieldnamefile): f = open(fieldnamefile) for row in f: row = row.split() if len(row)>0: fieldnames.append(row[0]) f.close() else: self.fieldnames = [ "field_"+str(i) for i in range(a.shape[1]) ] return dataset.ArrayDataSet(a,lookup_list.LookupList(fieldnames,[x for x in range(a.shape[1])])) def load_amat_as_array_dataset(fname): import dataset,lookup_list #load the amat as array (a,fieldnames)=readAMat(fname) #load the fieldnames if len(fieldnames)==0: self.fieldnames = [ "field_"+str(i) for i in range(a.shape[1]) ] return dataset.ArrayDataSet(a,lookup_list.LookupList(fieldnames,[x for x in range(a.shape[1])])) def save_array_dataset_as_pmat(fname,ds): ar=ds.data save_array_as_pmat(fname,ar,ds.fieldNames()) def save_array_as_pmat( fname, ar, fieldnames=[] ): s = file(fname,'wb') length, width = ar.shape if fieldnames: assert len(fieldnames) == width metadatadir = fname+'.metadata' if not os.path.isdir(metadatadir): os.mkdir(metadatadir) fieldnamefile = os.path.join(metadatadir,'fieldnames') f = open(fieldnamefile,'wb') for name in fieldnames: f.write(name+'\t0\n') f.close() header = 'MATRIX ' + str(length) + ' ' + str(width) + ' ' if ar.dtype.char=='d': header += 'DOUBLE ' elemsize = 8 elif ar.dtype.char=='f': header += 'FLOAT ' elemsize = 4 else: raise TypeError('Unsupported typecode: %s' % ar.dtype.char) rowsize = elemsize*width if sys.byteorder=='little': header += 'LITTLE_ENDIAN ' elif sys.byteorder=='big': header += 'BIG_ENDIAN ' else: raise TypeError('Unsupported sys.byteorder: '+repr(sys.byteorder)) header += ' '*(63-len(header))+'\n' s.write( header ) s.write( ar.tostring() ) s.close() ####### Iterators ########################################################### class VMatIt: def __init__(self, vmat): self.vmat = vmat self.cur_row = 0 def __iter__(self): return self def next(self): if self.cur_row==self.vmat.length: raise StopIteration row = self.vmat.getRow(self.cur_row) self.cur_row += 1 return row class ColumnIt: def __init__(self, vmat, col): self.vmat = vmat self.col = col self.cur_row = 0 def __iter__(self): return self def next(self): if self.cur_row==self.vmat.length: raise StopIteration val = self.vmat[self.cur_row, self.col] self.cur_row += 1 return val ####### VMat classes ######################################################## class VMat: def __iter__(self): return VMatIt(self) def __getitem__( self, key ): if isinstance( key, slice ): start, stop, step = key.start, key.stop, key.step if step!=None: raise IndexError('Extended slice with step not currently supported') if start is None: start = 0 l = self.length if stop is None or stop > l: stop = l return self.getRows(start,stop-start) elif isinstance( key, tuple ): # Basically returns a SubVMatrix assert len(key) == 2 rows = self.__getitem__( key[0] ) shape = rows.shape if len(shape) == 1: return rows[ key[1] ] cols = key[1] if isinstance(cols, slice): start, stop, step = cols.start, cols.stop, cols.step if start is None: start = 0 if stop is None: stop = self.width elif stop < 0: stop = self.width+stop cols = slice(start, stop, step) return array_columns(rows, cols) elif isinstance( key, str ): # The key is considered to be a fieldname and a column is # returned. try: return array_columns( self.getRows(0,self.length), self.fieldnames.index(key) ) except ValueError: print >>sys.stderr, "Key is '%s' while fieldnames are:" % key print >>sys.stderr, self.fieldnames raise else: if key<0: key+=self.length return self.getRow(key) def getFieldIndex(self, fieldname): try: return self.fieldnames.index(fieldname) except ValueError: raise ValueError( "VMat has no field named %s. Field names: %s" %(fieldname, ','.join(self.fieldnames)) ) class PMat( VMat ): def __init__(self, fname, openmode='r', fieldnames=[], elemtype='d', inputsize=-1, targetsize=-1, weightsize=-1, array = None): self.fname = fname self.inputsize = inputsize self.targetsize = targetsize self.weightsize = weightsize if openmode=='r': self.f = open(fname,'rb') self.read_and_parse_header() self.load_fieldnames() elif openmode=='w': self.f = open(fname,'w+b') self.fieldnames = fieldnames self.save_fieldnames() self.length = 0 self.width = len(fieldnames) self.elemtype = elemtype self.swap_bytes = False self.write_header() elif openmode=='a': self.f = open(fname,'r+b') self.read_and_parse_header() self.load_fieldnames() else: raise ValueError("Currently only supported openmodes are 'r', 'w' and 'a': "+repr(openmode)+" is not supported") if array is not None: shape = array.shape if len(shape) == 1: row_format = lambda r: [ r ] elif len(shape) == 2: row_format = lambda r: r for row in array: self.appendRow( row_format(row) ) def __del__(self): self.close() def write_header(self): header = 'MATRIX ' + str(self.length) + ' ' + str(self.width) + ' ' if self.elemtype=='d': header += 'DOUBLE ' self.elemsize = 8 elif self.elemtype=='f': header += 'FLOAT ' self.elemsize = 4 else: raise TypeError('Unsupported elemtype: '+repr(elemtype)) self.rowsize = self.elemsize*self.width if sys.byteorder=='little': header += 'LITTLE_ENDIAN ' elif sys.byteorder=='big': header += 'BIG_ENDIAN ' else: raise TypeError('Unsupported sys.byteorder: '+repr(sys.byteorder)) header += ' '*(63-len(header))+'\n' self.f.seek(0) self.f.write(header) def read_and_parse_header(self): header = self.f.read(64) mat_type, l, w, data_type, endianness = header.split() if mat_type!='MATRIX': raise ValueError('Invalid file header (should start with MATRIX)') self.length = int(l) self.width = int(w) if endianness=='LITTLE_ENDIAN': byteorder = 'little' elif endianness=='BIG_ENDIAN': byteorder = 'big' else: raise ValueError('Invalid endianness in file header: '+endianness) self.swap_bytes = (byteorder!=sys.byteorder) if data_type=='DOUBLE': self.elemtype = 'd' self.elemsize = 8 elif data_type=='FLOAT': self.elemtype = 'f' self.elemsize = 4 else: raise ValueError('Invalid data type in file header: '+data_type) self.rowsize = self.elemsize*self.width def load_fieldnames(self): self.fieldnames = [] fieldnamefile = os.path.join(self.fname+'.metadata','fieldnames') if os.path.isfile(fieldnamefile): f = open(fieldnamefile) for row in f: row = row.split() if len(row)>0: self.fieldnames.append(row[0]) f.close() else: self.fieldnames = [ "field_"+str(i) for i in range(self.width) ] def save_fieldnames(self): metadatadir = self.fname+'.metadata' if not os.path.isdir(metadatadir): os.mkdir(metadatadir) fieldnamefile = os.path.join(metadatadir,'fieldnames') f = open(fieldnamefile,'wb') for name in self.fieldnames: f.write(name+'\t0\n') f.close() def getRow(self,i): if i<0 or i>=self.length: raise IndexError('PMat index out of range') self.f.seek(64+i*self.rowsize) data = self.f.read(self.rowsize) ar = numpy.numarray.fromstring(data, self.elemtype, (self.width,)) if self.swap_bytes: ar.byteswap(True) return ar def getRows(self,i,l): if i<0 or l<0 or i+l>self.length: raise IndexError('PMat index out of range') self.f.seek(64+i*self.rowsize) data = self.f.read(l*self.rowsize) ar = numpy.numarray.fromstring(data, self.elemtype, (l,self.width)) if self.swap_bytes: ar.byteswap(True) return ar def checkzerorow(self,i): if i<0 or i>self.length: raise IndexError('PMat index out of range') self.f.seek(64+i*self.rowsize) data = self.f.read(self.rowsize) ar = numpy.numarray.fromstring(data, self.elemtype, (len(data)/self.elemsize,)) if self.swap_bytes: ar.byteswap(True) for elem in ar: if elem!=0: return False return True def putRow(self,i,row): if i<0 or i>=self.length: raise IndexError('PMat index out of range') if len(row)!=self.width: raise TypeError('length of row ('+str(len(row))+ ') differs from matrix width ('+str(self.width)+')') if i<0 or i>=self.length: raise IndexError if self.swap_bytes: # must make a copy and swap bytes ar = numpy.numarray.numarray(row,type=self.elemtype) ar.byteswap(True) else: # asarray makes a copy if not already a numarray of the right type ar = numpy.numarray.asarray(row,type=self.elemtype) self.f.seek(64+i*self.rowsize) self.f.write(ar.tostring()) def appendRow(self,row): if len(row)!=self.width: raise TypeError('length of row ('+str(len(row))+ ') differs from matrix width ('+str(self.width)+')') if self.swap_bytes: # must make a copy and swap bytes ar = numpy.numarray.numarray(row,type=self.elemtype) ar.byteswap(True) else: # asarray makes a copy if not already a numarray of the right type ar = numpy.numarray.asarray(row,type=self.elemtype) self.f.seek(64+self.length*self.rowsize) self.f.write(ar.tostring()) self.length += 1 self.write_header() # update length in header def flush(self): self.f.flush() def close(self): if hasattr(self, 'f'): self.f.close() def append(self,row): self.appendRow(row) def __setitem__(self, i, row): l = self.length if i<0: i+=l self.putRow(i,row) def __len__(self): return self.length #copied from PLEARNDIR:python_modules/plearn/vmat/readAMat.py def safefloat(str): """Convert the given string to its float value. It is 'safe' in the sense that missing values ('nan') will be properly converted to the corresponding float value under all platforms, contrarily to 'float(str)'. """ if str.lower() == 'nan': return fpconst.NaN else: return float(str) #copied from PLEARNDIR:python_modules/plearn/vmat/readAMat.py def readAMat(amatname): """Read a PLearn .amat file and return it as a numarray Array. Return a tuple, with as the first argument the array itself, and as the second argument the fieldnames (list of strings). """ ### NOTE: this version is much faster than first creating the array and ### updating each row as it is read... Bizarrely enough f = open(amatname) a = [] fieldnames = [] for line in f: if line.startswith("#size:"): (length,width) = line[6:].strip().split() elif line.startswith("#sizes:"): # ignore input/target/weight/extra sizes continue elif line.startswith("#:"): fieldnames = line[2:].strip().split() pass elif not line.startswith('#'): # Add all non-comment lines. row = [ safefloat(x) for x in line.strip().split() ] if row: a.append(row) f.close() return numpy.numarray.array(a), fieldnames if __name__ == '__main__': pmat = PMat( 'tmp.pmat', 'w', fieldnames=['F1', 'F2'] ) pmat.append( [1, 2] ) pmat.append( [3, 4] ) pmat.close() pmat = PMat( 'tmp.pmat', 'r' ) ar=load_pmat_as_array('tmp.pmat') ds=load_pmat_as_array_dataset('tmp.pmat') print "PMat",pmat print "PMat",pmat[:] print "array",ar print "ArrayDataSet",ds for i in ds: print i save_array_dataset_as_pmat("tmp2.pmat",ds) ds2=load_pmat_as_array_dataset('tmp2.pmat') for i in ds2: print i # print "+++ tmp.pmat contains: " # os.system( 'plearn vmat cat tmp.pmat' ) import shutil for fname in ["tmp.pmat", "tmp2.pmat"]: os.remove( fname ) if os.path.exists( fname+'.metadata' ): shutil.rmtree( fname+'.metadata' )