Mercurial > pylearn
view mlp_factory_approach.py @ 253:394e07e2b0fd
code clean up
author | Frederic Bastien <bastienf@iro.umontreal.ca> |
---|---|
date | Tue, 03 Jun 2008 13:23:28 -0400 |
parents | 3156a9976183 |
children | a1793a5e9523 |
line wrap: on
line source
import copy, sys import numpy import theano from theano import tensor as T from pylearn import dataset, nnet_ops, stopper, LookupList class AbstractFunction (Exception): pass class AutoName(object): """ By inheriting from this class, class variables which have a name attribute will have that name attribute set to the class variable name. """ class __metaclass__(type): def __init__(cls, name, bases, dct): type.__init__(name, bases, dct) for key, val in dct.items(): assert type(key) is str if hasattr(val, 'name'): val.name = key class GraphLearner(object): class Model(object): def __init__(self, algo, params): self.algo = algo self.params = params graph = self.algo.graph self.update_fn = algo._fn([graph.input, graph.target] + graph.params, [graph.nll] + graph.new_params) self._fn_cache = {} def __copy__(self): raise Exception('why not called?') return GraphLearner.Model(self.algo, [copy.copy(p) for p in params]) def _cache(self, key, valfn): d = self._fn_cache if key not in d: d[key] = valfn() return d[key] def update_minibatch(self, minibatch): assert isinstance(minibatch, LookupList) self.update_fn(minibatch['input'], minibatch['target'], *self.params) def update(self, dataset, default_minibatch_size=32): """Update this model from more training data.""" params = self.params minibatch_size = min(default_minibatch_size, len(dataset)) for mb in dataset.minibatches(['input', 'target'], minibatch_size=minibatch_size): self.update_minibatch(mb) def __call__(self, testset, fieldnames=['output_class']): """Apply this model (as a function) to new data. @param testset: DataSet, whose fields feed Result terms in self.algo.g @type testset: DataSet @param fieldnames: names of results in self.algo.g to compute. @type fieldnames: list of strings @return: DataSet with fields from fieldnames, computed from testset by this model. @rtype: ApplyFunctionDataSet instance """ graph = self.algo.graph def getresult(name): r = getattr(graph, name) if not isinstance(r, theano.Result): raise TypeError('string does not name a theano.Result', (name, r)) return r provided = [getresult(name) for name in testset.fieldNames()] wanted = [getresult(name) for name in fieldnames] inputs = provided + graph.params theano_fn = self._cache((tuple(inputs), tuple(wanted)), lambda: self.algo._fn(inputs, wanted)) lambda_fn = lambda *args: theano_fn(*(list(args) + self.params)) return dataset.ApplyFunctionDataSet(testset, lambda_fn, fieldnames) class Graph(object): class Opt(object): merge = theano.gof.MergeOptimizer() gemm_opt_1 = theano.gof.TopoOptimizer(theano.tensor_opt.gemm_pattern_1) sqr_opt_0 = theano.gof.TopoOptimizer(theano.gof.PatternSub( (T.mul,'x', 'x'), (T.sqr, 'x'))) def __init__(self, do_sqr=True): self.do_sqr = do_sqr def __call__(self, env): self.merge(env) self.gemm_opt_1(env) if self.do_sqr: self.sqr_opt_0(env) self.merge(env) def linker(self): return theano.gof.PerformLinker() def early_stopper(self): stopper.NStages(10,1) def train_iter(self, trainset): raise AbstractFunction optimizer = Opt() def __init__(self, graph): self.graph = graph def _fn(self, inputs, outputs): # Caching here would hamper multi-threaded apps # prefer caching in Model.__call__ return theano.function(inputs, outputs, unpack_single=False, optimizer=self.graph.optimizer, linker=self.graph.linker() if hasattr(self.graph, 'linker') else 'c&py') def __call__(self, trainset=None, validset=None, iparams=None): """Allocate and optionally train a model @param trainset: Data for minimizing the cost function @type trainset: None or Dataset @param validset: Data for early stopping @type validset: None or Dataset @param input: name of field to use as input @type input: string @param target: name of field to use as target @type target: string @return: model @rtype: GraphLearner.Model instance """ iparams = self.graph.iparams() if iparams is None else iparams curmodel = GraphLearner.Model(self, iparams) best = curmodel if trainset is not None: #do some training by calling Model.update_minibatch() stp = self.graph.early_stopper() for mb in self.graph.train_iter(trainset): curmodel.update_minibatch(mb) if stp.set_score: if validset: stp.score = curmodel(validset, ['validset_score']) if (stp.score < stp.best_score): best = copy.copy(curmodel) else: stp.score = 0.0 stp.next() if validset: curmodel = best return curmodel def graphMLP(ninputs, nhid, nclass, lr_val, l2coef_val=0.0): def wrapper(i, node, thunk): if 0: print i, node print thunk.inputs print thunk.outputs if node.op == nnet_ops.crossentropy_softmax_1hot_with_bias: print 'here is the nll op' thunk() #actually compute this piece of the graph class G(GraphLearner.Graph, AutoName): lr = T.constant(lr_val) assert l2coef_val == 0.0 l2coef = T.constant(l2coef_val) input = T.matrix() # n_examples x n_inputs target = T.ivector() # len: n_examples W2, b2 = T.matrix(), T.vector() W1, b1 = T.matrix(), T.vector() hid = T.tanh(b1 + T.dot(input, W1)) hid_regularization = l2coef * T.sum(W1*W1) params = [W1, b1, W2, b2] activations = b2 + T.dot(hid, W2) nll, predictions = nnet_ops.crossentropy_softmax_1hot(activations, target) regularization = l2coef * T.sum(W2*W2) + hid_regularization output_class = T.argmax(activations,1) loss_01 = T.neq(output_class, target) #g_params = T.grad(nll + regularization, params) g_params = T.grad(nll, params) new_params = [T.sub_inplace(p, lr * gp) for p,gp in zip(params, g_params)] def iparams(self): def randsmall(*shape): return (numpy.random.rand(*shape) -0.5) * 0.001 return [randsmall(ninputs, nhid) , randsmall(nhid) , randsmall(nhid, nclass) , randsmall(nclass)] def train_iter(self, trainset): return trainset.minibatches(['input', 'target'], minibatch_size=min(len(trainset), 32), n_batches=300) def early_stopper(self): return stopper.NStages(300,1) return G() import unittest class TestMLP(unittest.TestCase): def blah(self, g): training_set1 = dataset.ArrayDataSet(numpy.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]), {'input':slice(2),'target':2}) training_set2 = dataset.ArrayDataSet(numpy.array([[0, 0, 0], [0, 1, 1], [1, 0, 0], [1, 1, 1]]), {'input':slice(2),'target':2}) test_data = dataset.ArrayDataSet(numpy.array([[0, 0, 0], [0, 1, 1], [1, 0, 0], [1, 1, 1]]), {'input':slice(2)}) learn_algo = GraphLearner(g) model1 = learn_algo(training_set1) model2 = learn_algo(training_set2) omatch = [o1 == o2 for o1, o2 in zip(model1(test_data), model2(test_data))] n_match = sum(omatch) self.failUnless(n_match == (numpy.sum(training_set1.fields()['target'] == training_set2.fields()['target'])), omatch) def equiv(self, g0, g1): training_set1 = dataset.ArrayDataSet(numpy.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]), {'input':slice(2),'target':2}) learn_algo_0 = GraphLearner(g0) learn_algo_1 = GraphLearner(g1) model_0 = learn_algo_0(training_set1) model_1 = learn_algo_1(training_set1) print '----' for p in zip(model_0.params, model_1.params): abs_rel_err = theano.gradient.numeric_grad.abs_rel_err(p[0], p[1]) max_abs_rel_err = numpy.max(abs_rel_err) if max_abs_rel_err > 1.0e-7: print 'p0', p[0] print 'p1', p[1] #self.failUnless(max_abs_rel_err < 1.0e-7, max_abs_rel_err) def test0(self): self.blah(graphMLP(2, 10, 2, .1)) def test1(self): self.blah(graphMLP(2, 3, 2, .1)) if __name__ == '__main__': unittest.main()