view learner.py @ 78:3499918faa9d

In the middle of designing TLearner
author bengioy@bengiomac.local
date Mon, 05 May 2008 09:35:30 -0400
parents 1e2bb5bad636
children c4726e19b8ec
line wrap: on
line source


from dataset import *
    
class Learner(object):
    """Base class for learning algorithms, provides an interface
    that allows various algorithms to be applicable to generic learning
    algorithms.

    A Learner can be seen as a learning algorithm, a function that when
    applied to training data returns a learned function, an object that
    can be applied to other data and return some output data.
    """
    
    def __init__(self):
        pass

    def forget(self):
        """
        Reset the state of the learner to a blank slate, before seeing
        training data. The operation may be non-deterministic if the
        learner has a random number generator that is set to use a
        different seed each time it forget() is called.
        """
        raise NotImplementedError

    def update(self,training_set,train_stats_collector=None):
        """
        Continue training a learner, with the evidence provided by the given training set.
        Hence update can be called multiple times. This is particularly useful in the
        on-line setting or the sequential (Bayesian or not) settings.
        The result is a function that can be applied on data, with the same
        semantics of the Learner.use method.

        The user may optionally provide a training StatsCollector that is used to record
        some statistics of the outputs computed during training. It is update(d) during
        training.
        """
        return self.use # default behavior is 'non-adaptive', i.e. update does not do anything
    
    
    def __call__(self,training_set,train_stats_collector=None):
        """
        Train a learner from scratch using the provided training set,
        and return the learned function.
        """
        self.forget()
        return self.update(learning_task,train_stats_collector)

    def use(self,input_dataset,output_fields=None,copy_inputs=True):
        """Once a Learner has been trained by one or more call to 'update', it can
        be used with one or more calls to 'use'. The argument is a DataSet (possibly
        containing a single example) and the result is a DataSet of the same length.
        If output_fields is specified, it may be use to indicate which fields should
        be constructed in the output DataSet (for example ['output','classification_error']).
        Optionally, if copy_inputs, the input fields (of the input_dataset) can be made
        visible in the output DataSet returned by this method.
        """
        raise NotImplementedError

    def attribute_names(self):
        """
        A Learner may have attributes that it wishes to export to other objects. To automate
        such export, sub-classes should define here the names (list of strings) of these attributes.
        """
        return []

class TLearner(Learner):
    """
    TLearner is a virtual class of Learners that attempts to factor out of the definition
    of a learner the steps that are common to many implementations of learning algorithms,
    so as to leave only "the equations" to define in particular sub-classes, using Theano.

    In the default implementations of use and update, it is assumed that the 'use' and 'update' methods
    visit examples in the input dataset sequentially. In the 'use' method only one pass through the dataset is done,
    whereas the sub-learner may wish to iterate over the examples multiple times. Subclasses where this
    basic model is not appropriate can simply redefine update or use.
    
    Sub-classes must provide the following functions and functionalities:
      - attributeNames(): defines all the names of attributes which can be used as fields or
                          attributes in input/output datasets or in stats collectors.
                          All these attributes are expected to be theano.Result objects
                          (with a .data property and recognized by theano.Function for compilation).
                          The sub-class constructor defines the relations between
                          the Theano variables that may be used by 'use' and 'update'
                          or by a stats collector.
      - defaultOutputFields(input_fields): return a list of default dataset output fields when
                          None are provided by the caller of use.
      - 
      
    """