Mercurial > pylearn
view algorithms/tests/test_daa.py @ 493:32509c479e2d
Added test_daa.py
author | Joseph Turian <turian@gmail.com> |
---|---|
date | Tue, 28 Oct 2008 11:40:31 -0400 |
parents | |
children | 3c60c2db0319 |
line wrap: on
line source
#!/usr/bin/python from pylearn import algorithms as models import theano import numpy import time def test_train_daa(mode = theano.Mode('c|py', 'fast_run')): ndaa = 3 daa = models.Stacker([(models.SigmoidXEDenoisingAA, 'hidden')] * ndaa + [(models.BinRegressor, 'output')], regularize = False) model = daa.make([4, 20, 20, 20, 1], lr = 0.01, mode = mode, seed = 10) model.layers[0].noise_level = 0.3 model.layers[1].noise_level = 0.3 model.layers[2].noise_level = 0.3 # Update the first hidden layer model.local_update[0]([[0, 1, 0, 1]]) model.local_update[1]([[0, 1, 0, 1]]) model.local_update[2]([[0, 1, 0, 1]]) model.update([[0, 1, 0, 1]], [[0]]) print model.classify([[0, 1, 0, 1]]) if __name__ == '__main__': # print 'optimized:' # t1 = test_train_daa(theano.Mode('py', 'fast_compile')) # t1 = test_train_daa(theano.Mode('c|py', 'fast_run')) # print 'time:',t1 # print # print 'not optimized:' # t2 = test_train_daa(theano.Mode('c|py', 'fast_compile')) ## print 'time:',t2 # test_train_daa(theano.compile.Mode('c&py', 'merge')) test_train_daa(theano.compile.Mode('c|py', 'merge'))