Mercurial > pylearn
view algorithms/daa.py @ 672:27b1344a57b1
Added preprocessing back in
author | Joseph Turian <turian@gmail.com> |
---|---|
date | Thu, 20 Nov 2008 06:38:06 -0500 |
parents | dc2d93590da0 |
children |
line wrap: on
line source
import theano from theano import tensor as T from theano.tensor import nnet as NN import numpy as N from pylearn import cost as cost class DenoisingAA(T.RModule): """De-noising Auto-encoder WRITEME Abstract base class. Requires subclass with functions: - build_corrupted_input() Introductory article about this model WRITEME. """ def __init__(self, input = None, regularize = True, tie_weights = True, activation_function=NN.sigmoid, reconstruction_cost_function=cost.cross_entropy): """ :param input: WRITEME :param regularize: WRITEME :param tie_weights: WRITEME :param activation_function: WRITEME :param reconstruction_cost: Should return one cost per example (row) :todo: Default noise level for all daa levels """ super(DenoisingAA, self).__init__() # MODEL CONFIGURATION self.regularize = regularize self.tie_weights = tie_weights self.activation_function = activation_function self.reconstruction_cost_function = reconstruction_cost_function # ACQUIRE/MAKE INPUT if not input: input = T.matrix('input') self.input = theano.External(input) # HYPER-PARAMETERS self.lr = theano.Member(T.scalar()) # PARAMETERS self.w1 = theano.Member(T.matrix()) if not tie_weights: self.w2 = theano.Member(T.matrix()) else: self.w2 = self.w1.T self.b1 = theano.Member(T.vector()) self.b2 = theano.Member(T.vector()) # REGULARIZATION COST self.regularization = self.build_regularization() ### NOISELESS ### # HIDDEN LAYER self.hidden_activation = T.dot(self.input, self.w1) + self.b1 self.hidden = self.hid_activation_function(self.hidden_activation) # RECONSTRUCTION LAYER self.output_activation = T.dot(self.hidden, self.w2) + self.b2 self.output = self.out_activation_function(self.output_activation) # RECONSTRUCTION COST self.reconstruction_costs = self.build_reconstruction_costs(self.output) self.reconstruction_cost = T.mean(self.reconstruction_costs) # TOTAL COST self.cost = self.reconstruction_cost if self.regularize: self.cost = self.cost + self.regularization ### WITH NOISE ### self.corrupted_input = self.build_corrupted_input() # HIDDEN LAYER self.nhidden_activation = T.dot(self.corrupted_input, self.w1) + self.b1 self.nhidden = self.hid_activation_function(self.nhidden_activation) # RECONSTRUCTION LAYER self.noutput_activation = T.dot(self.nhidden, self.w2) + self.b2 self.noutput = self.out_activation_function(self.noutput_activation) # RECONSTRUCTION COST self.nreconstruction_costs = self.build_reconstruction_costs(self.noutput) self.nreconstruction_cost = T.mean(self.nreconstruction_costs) # TOTAL COST self.ncost = self.nreconstruction_cost if self.regularize: self.ncost = self.ncost + self.regularization # GRADIENTS AND UPDATES if self.tie_weights: self.params = self.w1, self.b1, self.b2 else: self.params = self.w1, self.w2, self.b1, self.b2 gradients = T.grad(self.ncost, self.params) updates = dict((p, p - self.lr * g) for p, g in zip(self.params, gradients)) # INTERFACE METHODS self.update = theano.Method(self.input, self.ncost, updates) self.compute_cost = theano.Method(self.input, self.cost) self.noisify = theano.Method(self.input, self.corrupted_input) self.reconstruction = theano.Method(self.input, self.output) self.representation = theano.Method(self.input, self.hidden) self.reconstruction_through_noise = theano.Method(self.input, [self.corrupted_input, self.noutput]) self.validate = theano.Method(self.input, [self.cost, self.output]) def _instance_initialize(self, obj, input_size = None, hidden_size = None, seed = None, **init): if (input_size is None) ^ (hidden_size is None): raise ValueError("Must specify input_size and hidden_size or neither.") super(DenoisingAA, self)._instance_initialize(obj, **init) if seed is not None: R = N.random.RandomState(seed) else: R = N.random if input_size is not None: sz = (input_size, hidden_size) inf = 1/N.sqrt(input_size) hif = 1/N.sqrt(hidden_size) obj.w1 = R.uniform(size = sz, low = -inf, high = inf) if not self.tie_weights: obj.w2 = R.uniform(size = list(reversed(sz)), low = -hif, high = hif) obj.b1 = N.zeros(hidden_size) obj.b2 = N.zeros(input_size) if seed is not None: obj.seed(seed) obj.__hide__ = ['params'] def build_regularization(self): """ @todo: Why do we need this function? """ return T.zero() # no regularization! class SigmoidXEDenoisingAA(DenoisingAA): """ @todo: Merge this into the above. @todo: Default noise level for all daa levels """ def build_corrupted_input(self): self.noise_level = theano.Member(T.scalar()) return self.random.binomial(T.shape(self.input), 1, 1 - self.noise_level) * self.input def hid_activation_function(self, activation): return self.activation_function(activation) def out_activation_function(self, activation): return self.activation_function(activation) def build_reconstruction_costs(self, output): return self.reconstruction_cost_function(self.input, output) def build_regularization(self): self.l2_coef = theano.Member(T.scalar()) if self.tie_weights: return self.l2_coef * T.sum(self.w1 * self.w1) else: return self.l2_coef * (T.sum(self.w1 * self.w1) + T.sum(self.w2 * self.w2)) def _instance_initialize(self, obj, input_size = None, hidden_size = None, seed = None, **init): init.setdefault('noise_level', 0) init.setdefault('l2_coef', 0) super(SigmoidXEDenoisingAA, self)._instance_initialize(obj, input_size, hidden_size, seed, **init)