Mercurial > pylearn
view datasets/MNIST.py @ 491:180d125dc7e2
made logistic_regression classes compatible with stacker
author | Olivier Breuleux <breuleuo@iro.umontreal.ca> |
---|---|
date | Tue, 28 Oct 2008 11:39:27 -0400 |
parents | 11e0357f06f4 |
children | 19ab9ce916e3 |
line wrap: on
line source
""" Various routines to load/access MNIST data. """ from __future__ import absolute_import import numpy from ..amat import AMat default_path = '/u/bergstrj/pub/data/mnist.amat' """the location of a file containing mnist data in .amat format""" def head(n=10, path=None): """Load the first MNIST examples. Returns two matrices: x, y. x has N rows of 784 columns. Each row of x represents the 28x28 grey-scale pixels in raster order. y is a vector of N integers. Each element y[i] is the label of the i'th row of x. """ path = path if path is not None else default_path dat = AMat(path=path, head=n) return dat.input, numpy.asarray(dat.target, dtype='int64').reshape(dat.target.shape[0]) def train_valid_test(ntrain=50000, nvalid=10000, ntest=10000, path=None): all_x, all_targ = head(ntrain+nvalid+ntest, path=path) train = all_x[0:ntrain], all_targ[0:ntrain] valid = all_x[ntrain:ntrain+nvalid], all_targ[ntrain:ntrain+nvalid] test = all_x[ntrain+nvalid:ntrain+nvalid+ntest], all_targ[ntrain+nvalid:ntrain+nvalid+ntest] return train, valid, test def all(path=None): return head(n=None, path=path)