Mercurial > pylearn
view _test_dataset.py @ 135:0d8e721cc63c
Fixed bugs in dataset to make test_mlp.py work
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Mon, 12 May 2008 14:30:21 -0400 |
parents | 46c5c90019c2 |
children | 5b3afda2f1ad |
line wrap: on
line source
from dataset import * from math import * import unittest def _sum_all(a): s=a while isinstance(s,numpy.ndarray): s=sum(s) return s class T_arraydataset(unittest.TestCase): def setUp(self): numpy.random.seed(123456) def test_ctor_len(self): n = numpy.random.rand(8,3) a=ArrayDataSet(n) self.failUnless(a.data is n) self.failUnless(a.fields is None) self.failUnless(len(a) == n.shape[0]) self.failUnless(a[0].shape == (n.shape[1],)) def test_iter(self): arr = numpy.random.rand(8,3) a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,3)}) for i, example in enumerate(a): self.failUnless(numpy.all( example['x'] == arr[i,:2])) self.failUnless(numpy.all( example['y'] == arr[i,1:3])) def test_zip(self): arr = numpy.random.rand(8,3) a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,3)}) for i, x in enumerate(a.zip("x")): self.failUnless(numpy.all( x == arr[i,:2])) def test_minibatch_basic(self): arr = numpy.random.rand(10,4) a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,4)}) for i, mb in enumerate(a.minibatches(minibatch_size=2)): #all fields self.failUnless(numpy.all( mb['x'] == arr[i*2:i*2+2,0:2])) self.failUnless(numpy.all( mb['y'] == arr[i*2:i*2+2,1:4])) def test_getattr(self): arr = numpy.random.rand(10,4) a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,4)}) a_y = a.y self.failUnless(numpy.all( a_y == arr[:,1:4])) def test_minibatch_wraparound_even(self): arr = numpy.random.rand(10,4) arr2 = ArrayDataSet.Iterator.matcat(arr,arr) a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,4)}) #print arr for i, x in enumerate(a.minibatches(["x"], minibatch_size=2, n_batches=8)): #print 'x' , x self.failUnless(numpy.all( x == arr2[i*2:i*2+2,0:2])) def test_minibatch_wraparound_odd(self): arr = numpy.random.rand(10,4) arr2 = ArrayDataSet.Iterator.matcat(arr,arr) a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,4)}) for i, x in enumerate(a.minibatches(["x"], minibatch_size=3, n_batches=6)): self.failUnless(numpy.all( x == arr2[i*3:i*3+3,0:2])) class T_renamingdataset(unittest.TestCase): def setUp(self): numpy.random.seed(123456) def test_hasfield(self): n = numpy.random.rand(3,8) a=ArrayDataSet(data=n,fields={"x":slice(2),"y":slice(1,4),"z":slice(4,6)}) b=a.rename({'xx':'x','zz':'z'}) self.failUnless(b.hasFields('xx','zz') and not b.hasFields('x') and not b.hasFields('y')) class T_applyfunctiondataset(unittest.TestCase): def setUp(self): numpy.random.seed(123456) def test_function(self): n = numpy.random.rand(3,8) a=ArrayDataSet(data=n,fields={"x":slice(2),"y":slice(1,4),"z":slice(4,6)}) b=a.apply_function(lambda x,y: x+y,x+1, ['x','y'], ['x+y','x+1'], False,False,False) print b.fieldNames() print b('x+y') if __name__ == '__main__': unittest.main()