view doc/v2_planning/plugin_PL.py @ 1364:01157763c2d7

Reply to Razvan
author Olivier Delalleau <delallea@iro>
date Fri, 12 Nov 2010 11:36:30 -0500
parents 826d78f0135f
children
line wrap: on
line source

class RBM(Model):
    '''
    Restricted Boltzmann Machine.
    '''
    def __init__(self, n_visible, n_hidden, visible = None, name = None):

        if name is None:
            self.__name__ = self.__class__.__name__
        else:
            self.__name__ = name
        self.n_visible = n_visible
        self.n_hidden = n_hidden

        if self.visible is None:
            self.visible = theano.tensor.matrix([name='.'.join(self.__name__, 'visible']))
        else:
            self.visible = visible

        self.W = theano.shared(
                numpy.zeros((n_visible, n_hidden), dtype=theano.config.floatX),
                name=self.__name__ + '.W')
        self.b_hid = theano.shared(
                numpy.zeros((n_hidden,), dtype=theano.config.floatX),
                name=self.__name__ + '.b_hid')
        self.b_vis = theano.shared(
                numpy.zeros((n_hidden,), dtype=theano.config.floatX),
                name=self.__name__ + '.b_vis')

        self.inputs = [self.visible]
        self.targets = []
        self.parameters = [self.W, self.b_hid, self.b_vis]
        self.outputs = ...
        self.cost = None
        self.gradients = [...]

class LogisticRegression(Model):
    pass

class GradientBasedLearner(Learner):
    '''
    Learner that uses a gradient-base Optimizer to train a Model.
    '''
    def __init__(self, model, optimizer, name = None):
        self.model = model
        self.optimizer = optimizer
        ...

        self.updates = optimizer.iterative_optimizer(
                parameters = model.parameters,
                cost = model.cost)

        # TODO: not sure of how to interface data set with the function
        self.train_fn = theano.function(model.inputs+model.targets,
                                        model.cost, updates=self.updates)

    def use_dataset(self, dataset):
        self.train_set = dataset

    # The decorator indicates that this function will declare some hooks.
    # More hooks could be automatically declared, for instance
    # 'begin_function' and 'end_function'
    @declare_hooks(['begin_train_iter', 'end_train_iter'])
    def adapt(self, n_steps=1):
        for i in xrange(n_steps):
            self.adapt.hooks.execute(
                    'begin_train_iter',
                    context = dict(iter=i, total=n_steps, locals=locals()))

            data = self.train_set.next()
            self.train_fn(data)

            self.adapt.hooks.execute(
                    'end_train_iter',
                    context = dict(iter = i, locals=locals()))


class SGD(Optimizer):
    '''
    Stochastic gradient descent with fixed learning rate.
    '''
    def __init__(self, step_size):
        self.step_size = step_size

    def iterative_optimizer(
            parameters,
            cost=None,
            gradients=None,
            stop=None,
            updates=None,
            ):

        if updates is not None:
            ret = updates
        else:
            ret = {}

        if gradients is None:
            if cost is None:
                raise SomeError('SGD needs to be provided either a cost or a gradients list')
            gradients = theano.tensor.grad(cost, parameters)

        for p, g in izip(parameters, gradients):
            if p in updates:
                raise KeyError('Parameter %s already has an update value (%s)' % (p, g))
            ret[p] = p - self.step_size * g

        # never stop
        if stop is not None:
            ret[stop] = False

        return ret



class DBN(Learner):
    '''
    Deep Belief Network.
    '''
    def __init__(self, n_layers, layer_config, n_ft_steps, ft_step_size):
        # Layers are GradientBasedLearners, with DBN as Model
        self.layers = []
        # Pretraining cumulative schedule
        self.pt_cumul_schedule = [0]
        # Build the layers and the fully-connected model
        self.input = theano.tensor.matrix(name='.'.join([self.__name__, 'input']))
        self.output = self.input
        self.ft_params = []
        for i,lconf in enumerate(layer_config):
            rbm = RBM(visible = self.output, ...)
            self.output = rbm.hidden_expectation
            layer = GradientBasedLearner(...)
            self.layers.append(layer)

            self.pt_cumul_schedule.append(
                    self.pt_cumul_schedule[-1]+lc.n_pretrain_steps)

            self.ft_params.extend([rbm.W, rbm.b_hid])

        # Build the fine-tunable model
        self.target = theano.tensor.ivector(name='.'.join([self.__name__, 'target']))
        logreg = LogisticRegression(...)
        self.output = logreg.output
        self.cost = logreg.nll
        self.ft_params.extend([logreg.W, logreg.b])

        ft_optimizer = SGD(ft_step_size)
        self.ft_updates = ft_optimizer.iterative_optimizer(
                parameters = self.ft_params,
                cost = self.cost)
        self.ft_fn = theano.function(
                [self.input, self.target],
                self.cost,
                updates = self.ft_updates,
                name='.'.join([self.__name__, 'ft_fn']))

        self.stage = 0

    @declare_hooks([
        'begin_pretrain_layer','end_pretrain_layer',
        'begin_finetune_iter', 'end_finetune_iter'])

    def adapt(self, n_steps=1):
        '''
        Each "step" is accomplished by the corresponding Learner (either an RBM,
        or the global NNet).
        '''
        train_x, train_y = self.dataset
        n_remaining_steps = n_steps
        # Unsupervised pre-training
        for i, layer in ienumerate(self.layers):
            if (self.pt_cumul_schedule[i] <= self.stage
                    and self.stage < self.pt_cumul_schedule[i+1]):

                self.adapt.hooks.execute(
                        'begin_pretrain_layer',
                        context = dict(iter=i, total=len(self.layers), locals=locals()))

                n_pt_steps = min(n_remaining_steps, self.pt_cumul_schedule[i+1] - self.stage)
                layer.use_dataset(train_x)
                layer.adapt(n_steps = n_pt_steps)
                self.stage += self.n_pt_steps
                n_remaining_steps -= n_pt_steps

                self.adapt.hooks.execute(
                        'end_pretrain_layer',
                        context = dict(iter=i, total=len(self.layers), locals=locals()))

            # For the next layer, the data needs to be preprocessed
            train_x = layer.compute_Eh_given_v(train_x) # or just compute_output?

        # Supervised fine-tuning
        if n_remaining_steps > 0:
            sup_data = train_x, train_y
            for i in xrange(n_remaining_steps):
                self.adapt.hooks.execute(
                        'begin_train_iter',
                        context = dict(iter=i, total=n_steps, locals=locals()))

                data = self.train_set.next()
                self.ft_fn(data)

                self.adapt.hooks.execute(
                        'end_train_iter',
                        context = dict(iter = i, locals=locals()))


## TODO: implement k-fold cross-validation

class Hooks:
    def __init__(self):
        # The DB consists in a dictionary,
        # the keys are the hooks' names (as strings),
        # the values are lists of (function, exec_condition) pairs of functions
        self.db = {}

    def declare(self, name):
        if name in self.db:
            raise KeyError('Hook "%s" is already declared' % name)
        self.db[name] = []

    def execute(self, name, context):
        if name not in self.db:
            raise KeyError('Hook "%s" does not exist', % name)
        #TODO: add contextual information to context, like current time, time of last call,...
        for fn, cond in self.db[name]:
            if cond(**context):
                fn(**context)

    def register(self, name, function, exec_condition):
        if name not in self.db:
            raise KeyError('Hook "%s" does not exist', % name)
        self.db[name].append((function, exec_condition))

    #TODO: add __getattr__ to have more intuitive access to the hooks

# Hook declaration mechanism
def declare_hooks(hooks_list):
    def deco(f):
        f.hooks = Hooks()
        for hook_name in hooks_list:
            f.hooks.declare(hook_name)

    return deco

# Conditions
def always():
    return lambda *args, **kwargs: True


def main():
    train_data = MNIST.gettrain()
    test_data = MNIST.gettest()

    train_x, train_y = train_data

    preprocessor = PCA(ndim = 80)
    preprocessor.train(train_x)

    preprocessed_x = preprocessor.compute_output(train_x)
    ## for more robustess, we can have something like:
    # peprocessed_x = ProcessDataSet(orig_data = train_x, function = preprocessor.compute_output)


    x = matrix()
    dbn = DBN(
            input = x,
            n_layers = 3,
            layer_config = [dict(n_hidden = 500, n_unsup_steps=1000)] * 3
            )

    dbn.layers[0].adapt.hooks.register(
            'begin_train_iter',
            function = ...,
            exec_cond = always()
            )

    dbn.layers[0].adapt.hooks.register(
            'end_train_iter',
            function = ...,
            exec_cond = lambda iter, **kwargs: iter%20==0
            )


if __name__ == '__main__':
    main()