Mercurial > pylearn
diff mlp_factory_approach.py @ 206:f2ddc795ec49
changes made with Pascal but should probably be discarded
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Fri, 16 May 2008 16:36:27 -0400 |
parents | ebbb0e749565 |
children | c5a7105fa40b |
line wrap: on
line diff
--- a/mlp_factory_approach.py Wed May 14 14:06:52 2008 -0400 +++ b/mlp_factory_approach.py Fri May 16 16:36:27 2008 -0400 @@ -27,8 +27,9 @@ for i in xrange(100): for input, target in trainset.minibatches(['input', 'target'], minibatch_size=min(32, len(trainset))): - dummy = update_fn(input, target[:,0], *params) - if 0: print dummy[0] #the nll + results = update_fn(input, target[:,0], *params) + if 0: print results[0] + # print params['b'] def __call__(self, testset, output_fieldnames=['output_class'], @@ -39,7 +40,7 @@ """Apply this model (as a function) to new data""" inputs = [self.nnet.v.input, self.nnet.v.target] + self.nnet.v.params fn = _function(inputs, [getattr(self.nnet.v, name) for name in output_fieldnames]) - if 'target' in testset.fields(): + if 'target' in testset.fieldNames(): return dataset.ApplyFunctionDataSet(testset, lambda input, target: fn(input, target[:,0], *self.params), output_fieldnames) @@ -49,9 +50,11 @@ output_fieldnames) def __init__(self, ninputs, nhid, nclass, lr, nepochs, - l2coef=0.0, - linker='c&yp', - hidden_layer=None): + l2coef=0.0, + linker='c&yp', + hidden_layer=None): + if not hidden_layer: + hidden_layer = AffineSigmoidLayer("hidden",ninputs,nhid,l2coef) class Vars: def __init__(self, lr, l2coef): lr = t.constant(lr) @@ -61,16 +64,11 @@ W2 = t.matrix('W2') b2 = t.vector('b2') - if hidden_layer: - hid, hid_params, hid_ivals, hid_regularization = hidden_layer(input) - else: - W1 = t.matrix('W1') - b1 = t.vector('b1') - hid = t.tanh(b1 + t.dot(input, W1)) - hid_params = [W1, b1] - hid_regularization = l2coef * t.sum(W1*W1) - hid_ivals = lambda : [_randshape(ninputs, nhid), _randshape(nhid)] - + hid = hidden_layer(input) + hid_params = hidden_layer.params() + hid_params_init_vals = hidden_layer.params_ivals() + hid_regularization = hidden_layer.regularization() + params = [W2, b2] + hid_params nll, predictions = nnet_ops.crossentropy_softmax_1hot( b2 + t.dot(hid, W2), target) regularization = l2coef * t.sum(W2*W2) + hid_regularization @@ -78,7 +76,7 @@ loss_01 = t.neq(output_class, target) g_params = t.grad(nll + regularization, params) new_params = [t.sub_inplace(p, lr * gp) for p,gp in zip(params, g_params)] - self.__dict__.update(locals()); del self.self + setattr_and_name(self, locals()) self.nhid = nhid self.nclass = nclass self.nepochs = nepochs @@ -87,14 +85,27 @@ def __call__(self, trainset=None, iparams=None): if iparams is None: - iparams = [_randshape(self.nhid, self.nclass), _randshape(self.nclass)]\ - + self.v.hid_ivals() + iparams = LookupList(["W","b"],[_randshape(self.nhid, self.nclass), _randshape(self.nclass)]) + + self.v.hid_params_init_vals() rval = NeuralNet.Model(self, iparams) if trainset: rval.update(trainset) return rval +def setattr_and_name(self, dict): + """This will do a self.__setattr__ for all elements in the dict + (except for element self). In addition it will make sure that + each element's .name (if it exists) is set to the element's key + in the dicitonary. + Typical usage: setattr_and_name(self, locals()) """ + for varname,var in locals.items(): + if var is not self: + if hasattr(var,"name") and not var.name: + var.name=varname + self.__setattr__(varname,var) + + if __name__ == '__main__': training_set1 = dataset.ArrayDataSet(numpy.array([[0, 0, 0], [0, 1, 1], @@ -112,8 +123,11 @@ [1, 1, 1]]), {'input':slice(2)}) + learn_algo = NeuralNet(2, 10, 3, .1, 1000) + model = learn_algo() + model1 = learn_algo(training_set1) model2 = learn_algo(training_set2)