Mercurial > pylearn
diff learner.py @ 128:ee5507af2c60
minor edits
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Wed, 07 May 2008 20:51:24 -0400 |
parents | 4efe6d36c061 |
children | 4c2280edcaf5 3d8e40e7ed18 |
line wrap: on
line diff
--- a/learner.py Wed May 07 16:58:06 2008 -0400 +++ b/learner.py Wed May 07 20:51:24 2008 -0400 @@ -47,17 +47,74 @@ self.forget() return self.update(learning_task,train_stats_collector) - def use(self,input_dataset,output_fields=None,copy_inputs=True): - """Once a Learner has been trained by one or more call to 'update', it can - be used with one or more calls to 'use'. The argument is a DataSet (possibly - containing a single example) and the result is a DataSet of the same length. - If output_fields is specified, it may be use to indicate which fields should + def use(self,input_dataset,output_fieldnames=None, + test_stats_collector=None,copy_inputs=True, + put_stats_in_output_dataset=True, + output_attributes=[]): + """ + Once a Learner has been trained by one or more call to 'update', it can + be used with one or more calls to 'use'. The argument is an input DataSet (possibly + containing a single example) and the result is an output DataSet of the same length. + If output_fieldnames is specified, it may be use to indicate which fields should be constructed in the output DataSet (for example ['output','classification_error']). + Otherwise, self.defaultOutputFields is called to choose the output fields. Optionally, if copy_inputs, the input fields (of the input_dataset) can be made visible in the output DataSet returned by this method. + Optionally, attributes of the learner can be copied in the output dataset, + and statistics computed by the stats collector also put in the output dataset. + Note the distinction between fields (which are example-wise quantities, e.g. 'input') + and attributes (which are not, e.g. 'regularization_term'). + + We provide here a default implementation that does all this using + a sub-class defined method: minibatchwiseUseFunction. + + @todo check if some of the learner attributes are actually SPECIFIED + as attributes of the input_dataset, and if so use their values instead + of the ones in the learner. + + The learner tries to compute in the output dataset the output fields specified. + If None is specified then self.defaultOutputFields(input_dataset.fieldNames()) + is called to determine the output fields. + + Attributes of the learner can also optionally be copied into the output dataset. + If output_attributes is None then all of the attributes in self.AttributeNames() + are copied in the output dataset, but if it is [] (the default), then none are copied. + If a test_stats_collector is provided, then its attributes (test_stats_collector.AttributeNames()) + are also copied into the output dataset attributes. """ - raise AbstractFunction() + minibatchwise_use_function = self.minibatchwiseUseFunction(input_dataset.fieldNames(), + output_fieldnames, + test_stats_collector) + virtual_output_dataset = ApplyFunctionDataSet(input_dataset, + minibatchwise_use_function, + True,DataSet.numpy_vstack, + DataSet.numpy_hstack) + # actually force the computation + output_dataset = CachedDataSet(virtual_output_dataset,True) + if copy_inputs: + output_dataset = input_dataset | output_dataset + # copy the wanted attributes in the dataset + if output_attributes is None: + output_attributes = self.attributeNames() + if output_attributes: + assert set(attribute_names) <= set(self.attributeNames()) + output_dataset.setAttributes(output_attributes, + self.names2attributes(output_attributes,return_copy=True)) + if test_stats_collector: + test_stats_collector.update(output_dataset) + if put_stats_in_output_dataset: + output_dataset.setAttributes(test_stats_collector.attributeNames(), + test_stats_collector.attributes()) + return output_dataset + def minibatchwiseUseFunction(self, input_fields, output_fields, stats_collector): + """ + Returns a function that can map the given input fields to the given output fields + and to the attributes that the stats collector needs for its computation. + That function is expected to operate on minibatches. + The function returned makes use of the self.useInputAttributes() and + sets the attributes specified by self.useOutputAttributes(). + """ def attributeNames(self): """ A Learner may have attributes that it wishes to export to other objects. To automate @@ -67,6 +124,22 @@ """ return [] + def attributes(self,return_copy=False): + """ + Return a list with the values of the learner's attributes (or optionally, a deep copy). + """ + return self.names2attributes(self.attributeNames(),return_copy) + + def names2attributes(self,names,return_copy=False): + """ + Private helper function that maps a list of attribute names to a list + of (optionally copies) values of attributes. + """ + if return_copy: + return [copy.deepcopy(self.__getattr__(name).data) for name in names] + else: + return [self.__getattr__(name).data for name in names] + def updateInputAttributes(self): """ A subset of self.attributeNames() which are the names of attributes needed by update() in order @@ -145,22 +218,10 @@ """ raise AbstractFunction() - def allocate(self, minibatch): - """ - This function is called at the beginning of each updateMinibatch - and should be used to check that all required attributes have been - allocated and initialized (usually this function calls forget() - when it has to do an initialization). + def minibatchwiseUseFunction(self, input_fields, output_fields, stats_collector): """ - raise AbstractFunction() - - def minibatchwise_use_functions(self, input_fields, output_fields, stats_collector): - """ - Private helper function called by the generic TLearner.use. It returns a function - that can map the given input fields to the given output fields (along with the - attributes that the stats collector needs for its computation. The function - called also automatically makes use of the self.useInputAttributes() and - sets the self.useOutputAttributes(). + Implement minibatchwiseUseFunction by exploiting Theano compilation + and the expression graph defined by a sub-class constructor. """ if not output_fields: output_fields = self.defaultOutputFields(input_fields) @@ -186,22 +247,6 @@ self.use_functions_dictionary[key]=f return self.use_functions_dictionary[key] - def attributes(self,return_copy=False): - """ - Return a list with the values of the learner's attributes (or optionally, a deep copy). - """ - return self.names2attributes(self.attributeNames(),return_copy) - - def names2attributes(self,names,return_copy=False): - """ - Private helper function that maps a list of attribute names to a list - of (optionally copies) values of attributes. - """ - if return_copy: - return [copy.deepcopy(self.__getattr__(name).data) for name in names] - else: - return [self.__getattr__(name).data for name in names] - def names2OpResults(self,names): """ Private helper function that maps a list of attribute names to a list @@ -209,50 +254,6 @@ """ return [self.__getattr__('_'+name).data for name in names] - def use(self,input_dataset,output_fieldnames=None,output_attributes=[], - test_stats_collector=None,copy_inputs=True, put_stats_in_output_dataset=True): - """ - The learner tries to compute in the output dataset the output fields specified - - @todo check if some of the learner attributes are actually SPECIFIED - as attributes of the input_dataset, and if so use their values instead - of the ones in the learner. - - The learner tries to compute in the output dataset the output fields specified. - If None is specified then self.defaultOutputFields(input_dataset.fieldNames()) - is called to determine the output fields. - - Attributes of the learner can also optionally be copied into the output dataset. - If output_attributes is None then all of the attributes in self.AttributeNames() - are copied in the output dataset, but if it is [] (the default), then none are copied. - If a test_stats_collector is provided, then its attributes (test_stats_collector.AttributeNames()) - are also copied into the output dataset attributes. - """ - minibatchwise_use_function = self.minibatchwise_use_functions(input_dataset.fieldNames(), - output_fieldnames, - test_stats_collector) - virtual_output_dataset = ApplyFunctionDataSet(input_dataset, - minibatchwise_use_function, - True,DataSet.numpy_vstack, - DataSet.numpy_hstack) - # actually force the computation - output_dataset = CachedDataSet(virtual_output_dataset,True) - if copy_inputs: - output_dataset = input_dataset | output_dataset - # copy the wanted attributes in the dataset - if output_attributes is None: - output_attributes = self.attributeNames() - if output_attributes: - assert set(attribute_names) <= set(self.attributeNames()) - output_dataset.setAttributes(output_attributes, - self.names2attributes(output_attributes,return_copy=True)) - if test_stats_collector: - test_stats_collector.update(output_dataset) - if put_stats_in_output_dataset: - output_dataset.setAttributes(test_stats_collector.attributeNames(), - test_stats_collector.attributes()) - return output_dataset - class MinibatchUpdatesTLearner(TLearner): """ @@ -281,6 +282,15 @@ (self.names2OpResults(self.updateEndInputAttributes()), self.names2OpResults(self.updateEndOutputAttributes())) + def allocate(self, minibatch): + """ + This function is called at the beginning of each updateMinibatch + and should be used to check that all required attributes have been + allocated and initialized (usually this function calls forget() + when it has to do an initialization). + """ + raise AbstractFunction() + def updateMinibatchInputFields(self): raise AbstractFunction()