Mercurial > pylearn
diff denoising_aa.py @ 218:df3fae88ab46
small debugging
author | Thierry Bertin-Mahieux <bertinmt@iro.umontreal.ca> |
---|---|
date | Fri, 23 May 2008 12:22:54 -0400 |
parents | bd728c83faff |
children | 9e96fe8b955c |
line wrap: on
line diff
--- a/denoising_aa.py Thu May 22 19:08:46 2008 -0400 +++ b/denoising_aa.py Fri May 23 12:22:54 2008 -0400 @@ -31,6 +31,7 @@ def squash_affine_formula(squash_function=sigmoid): """ + Simply does: squash_function(b + xW) By convention prefix the parameters by _ """ class SquashAffineFormula(Formulas): @@ -53,7 +54,7 @@ class ProbabilisticClassifierLossFormula(Formulas): a = t.matrix() # of dimensions minibatch_size x n_classes, pre-softmax output target_class = t.ivector() # dimension (minibatch_size) - nll, probability_predictions = crossentropy_softmax_1hot(a, target_class) + nll, probability_predictions = crossentropy_softmax_1hot(a, target_class) # defined in nnet_ops.py return ProbabilisticClassifierLossFormula() def binomial_cross_entropy_formula(): @@ -64,6 +65,8 @@ # using the identity softplus(a) - softplus(-a) = a, # we obtain that q log(p) + (1-q) log(1-p) = q a - softplus(a) nll = -t.sum(q*a - softplus(-a)) + # next line was missing... hope it's all correct above + return BinomialCrossEntropyFormula() def squash_affine_autoencoder_formula(hidden_squash=t.tanh, reconstruction_squash=sigmoid, @@ -102,9 +105,33 @@ self.denoising_autoencoder_formula = corruption_formula + autoencoder.rename(x='corrupted_x') def __call__(self, training_set=None): + """ Allocate and optionnaly train a model""" model = DenoisingAutoEncoderModel(self) if training_set: - print 'what do I do if training set????' + print 'DenoisingAutoEncoder(): what do I do if training_set????' + # copied from mlp_factory_approach: + if len(trainset) == sys.maxint: + raise NotImplementedError('Learning from infinite streams is not supported') + nval = int(self.validation_portion * len(trainset)) + nmin = len(trainset) - nval + assert nmin >= 0 + minset = trainset[:nmin] #real training set for minimizing loss + valset = trainset[nmin:] #validation set for early stopping + best = model + for stp in self.early_stopper(): + model.update( + minset.minibatches([input, target], minibatch_size=min(32, + len(trainset)))) + #print 'mlp.__call__(), we did an update' + if stp.set_score: + stp.score = model(valset, ['loss_01']) + if (stp.score < stp.best_score): + best = copy.copy(model) + model = best + # end of the copy from mlp_factory_approach + + return model + def compile(self, inputs, outputs): return theano.function(inputs,outputs,unpack_single=False,linker=self.linker)