Mercurial > pylearn
diff algorithms/_test_logistic_regression.py @ 470:bd937e845bbb
new stuff: algorithms/logistic_regression, datasets/MNIST
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Wed, 22 Oct 2008 15:56:53 -0400 |
parents | |
children | c7ce66b4e8f4 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/algorithms/_test_logistic_regression.py Wed Oct 22 15:56:53 2008 -0400 @@ -0,0 +1,60 @@ +from logistic_regression import * +import sys, time + +if __name__ == '__main__': + pprint.assign(nnet_ops.crossentropy_softmax_1hot_with_bias_dx, printing.FunctionPrinter('xsoftmaxdx')) + pprint.assign(nnet_ops.crossentropy_softmax_argmax_1hot_with_bias, printing.FunctionPrinter('nll', 'softmax', 'argmax')) + if 1: + lrc = Module_Nclass() + + print '================' + print lrc.update.pretty() + print '================' + print lrc.update.pretty(mode = theano.Mode('py', 'fast_run')) + print '================' +# print lrc.update.pretty(mode = compile.FAST_RUN.excluding('inplace')) +# print '================' + +# sys.exit(0) + + lr = lrc.make(10, 2, mode=theano.Mode('c|py', 'fast_run')) + #lr = lrc.make(10, 2, mode=compile.FAST_RUN.excluding('fast_run')) + #lr = lrc.make(10, 2, mode=theano.Mode('py', 'merge')) #'FAST_RUN') + + data_x = N.random.randn(5, 10) + data_y = (N.random.randn(5) > 0) + + t = time.time() + for i in xrange(10000): + lr.lr = 0.02 + xe = lr.update(data_x, data_y) + #if i % 100 == 0: + # print i, xe + + print 'training time:', time.time() - t + print 'final error', xe + + #print + #print 'TRAINED MODEL:' + #print lr + + if 0: + lrc = Module() + + lr = lrc.make(10, mode=theano.Mode('c|py', 'merge')) #'FAST_RUN') + + data_x = N.random.randn(5, 10) + data_y = (N.random.randn(5, 1) > 0) + + for i in xrange(10000): + xe = lr.update(data_x, data_y) + if i % 100 == 0: + print i, xe + + print + print 'TRAINED MODEL:' + print lr + + + +