Mercurial > pylearn
diff algorithms/regressor.py @ 476:8fcd0f3d9a17
added a few algorithms
author | Olivier Breuleux <breuleuo@iro.umontreal.ca> |
---|---|
date | Mon, 27 Oct 2008 17:26:00 -0400 |
parents | |
children | 2b0e10ac6929 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/algorithms/regressor.py Mon Oct 27 17:26:00 2008 -0400 @@ -0,0 +1,103 @@ + +import theano +from theano import tensor as T +from theano.tensor import nnet as NN +import numpy as N + +class Regressor(theano.FancyModule): + + def __init__(self, input = None, target = None, regularize = True): + super(Regressor, self).__init__() + + # MODEL CONFIGURATION + self.regularize = regularize + + # ACQUIRE/MAKE INPUT AND TARGET + self.input = theano.External(input) if input else T.matrix('input') + self.target = theano.External(target) if target else T.matrix('target') + + # HYPER-PARAMETERS + self.lr = theano.Member(T.scalar()) + + # PARAMETERS + self.w = theano.Member(T.matrix()) + self.b = theano.Member(T.vector()) + + # OUTPUT + self.output_activation = T.dot(self.input, self.w) + self.b + self.output = self.build_output() + + # REGRESSION COST + self.regression_cost = self.build_regression_cost() + + # REGULARIZATION COST + self.regularization = self.build_regularization() + + # TOTAL COST + self.cost = self.regression_cost + if self.regularize: + self.cost = self.cost + self.regularization + + # GRADIENTS AND UPDATES + self.params = self.w, self.b + gradients = T.grad(self.cost, self.params) + updates = dict((p, p - self.lr * g) for p, g in zip(self.params, gradients)) + + # INTERFACE METHODS + self.update = theano.Method([self.input, self.target], self.cost, updates) + self.predict = theano.Method(self.input, self.output) + + self.build_extensions() + + def _instance_initialize(self, obj, input_size = None, output_size = None, seed = None, **init): + if seed is not None: + R = N.random.RandomState(seed) + else: + R = N.random + if (input_size is None) ^ (output_size is None): + raise ValueError("Must specify input_size and output_size or neither.") + super(Regressor, self)._instance_initialize(obj, **init) + if input_size is not None: + sz = (input_size, output_size) + range = 1/N.sqrt(input_size) + obj.w = R.uniform(size = sz, low = -range, high = range) + obj.b = N.zeros(output_size) + obj.__hide__ = ['params'] + + def _instance_flops_approx(self, obj): + return obj.w.size + + def build_extensions(self): + pass + + def build_output(self): + raise NotImplementedError('override in subclass') + + def build_regression_cost(self): + raise NotImplementedError('override in subclass') + + def build_regularization(self): + return T.zero() # no regularization! + + +class BinRegressor(Regressor): + + def build_extensions(self): + self.classes = T.iround(self.output) + self.classify = theano.Method(self.input, self.classes) + + def build_output(self): + return NN.sigmoid(self.output_activation) + + def build_regression_cost(self): + self.regression_cost_matrix = self.target * T.log(self.output) + (1.0 - self.target) * T.log(1.0 - self.output) + self.regression_costs = -T.sum(self.regression_cost_matrix, axis=1) + return T.mean(self.regression_costs) + + def build_regularization(self): + self.l2_coef = theano.Member(T.scalar()) + return self.l2_coef * T.sum(self.w * self.w) + + def _instance_initialize(self, obj, input_size = None, output_size = 1, seed = None, **init): + init.setdefault('l2_coef', 0) + super(BinRegressor, self)._instance_initialize(obj, input_size, output_size, seed, **init)