Mercurial > pylearn
diff algorithms/daa.py @ 476:8fcd0f3d9a17
added a few algorithms
author | Olivier Breuleux <breuleuo@iro.umontreal.ca> |
---|---|
date | Mon, 27 Oct 2008 17:26:00 -0400 |
parents | |
children | b15dad843c8c |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/algorithms/daa.py Mon Oct 27 17:26:00 2008 -0400 @@ -0,0 +1,147 @@ + +import theano +from theano import tensor as T +from theano.tensor import nnet as NN +import numpy as N + +class DenoisingAA(T.RModule): + + def __init__(self, input = None, regularize = True, tie_weights = True): + super(DenoisingAA, self).__init__() + + # MODEL CONFIGURATION + self.regularize = regularize + self.tie_weights = tie_weights + + # ACQUIRE/MAKE INPUT + if not input: + input = T.matrix('input') + self.input = theano.External(input) + + # HYPER-PARAMETERS + self.lr = theano.Member(T.scalar()) + + # PARAMETERS + self.w1 = theano.Member(T.matrix()) + if not tie_weights: + self.w2 = theano.Member(T.matrix()) + else: + self.w2 = self.w1.T + self.b1 = theano.Member(T.vector()) + self.b2 = theano.Member(T.vector()) + + + # REGULARIZATION COST + self.regularization = self.build_regularization() + + + ### NOISELESS ### + + # HIDDEN LAYER + self.hidden_activation = T.dot(self.input, self.w1) + self.b1 + self.hidden = self.hid_activation_function(self.hidden_activation) + + # RECONSTRUCTION LAYER + self.output_activation = T.dot(self.hidden, self.w2) + self.b2 + self.output = self.out_activation_function(self.output_activation) + + # RECONSTRUCTION COST + self.reconstruction_costs = self.build_reconstruction_costs(self.output) + self.reconstruction_cost = T.mean(self.reconstruction_costs) + + # TOTAL COST + self.cost = self.reconstruction_cost + if self.regularize: + self.cost = self.cost + self.regularization + + + ### WITH NOISE ### + self.corrupted_input = self.build_corrupted_input() + + # HIDDEN LAYER + self.nhidden_activation = T.dot(self.corrupted_input, self.w1) + self.b1 + self.nhidden = self.hid_activation_function(self.nhidden_activation) + + # RECONSTRUCTION LAYER + self.noutput_activation = T.dot(self.nhidden, self.w2) + self.b2 + self.noutput = self.out_activation_function(self.noutput_activation) + + # RECONSTRUCTION COST + self.nreconstruction_costs = self.build_reconstruction_costs(self.noutput) + self.nreconstruction_cost = T.mean(self.nreconstruction_costs) + + # TOTAL COST + self.ncost = self.nreconstruction_cost + if self.regularize: + self.ncost = self.ncost + self.regularization + + + # GRADIENTS AND UPDATES + if self.tie_weights: + self.params = self.w1, self.b1, self.b2 + else: + self.params = self.w1, self.w2, self.b1, self.b2 + gradients = T.grad(self.ncost, self.params) + updates = dict((p, p - self.lr * g) for p, g in zip(self.params, gradients)) + + # INTERFACE METHODS + self.update = theano.Method(self.input, self.ncost, updates) + self.compute_cost = theano.Method(self.input, self.cost) + self.noisify = theano.Method(self.input, self.corrupted_input) + self.reconstruction = theano.Method(self.input, self.output) + self.representation = theano.Method(self.input, self.hidden) + self.reconstruction_through_noise = theano.Method(self.input, [self.corrupted_input, self.noutput]) + + def _instance_initialize(self, obj, input_size = None, hidden_size = None, seed = None, **init): + if (input_size is None) ^ (hidden_size is None): + raise ValueError("Must specify hidden_size and target_size or neither.") + super(DenoisingAA, self)._instance_initialize(obj, **init) + if seed is not None: + R = N.random.RandomState(seed) + else: + R = N.random + if input_size is not None: + sz = (input_size, hidden_size) + inf = 1/N.sqrt(input_size) + hif = 1/N.sqrt(hidden_size) + obj.w1 = R.uniform(size = sz, low = -inf, high = inf) + if not self.tie_weights: + obj.w2 = R.uniform(size = list(reversed(sz)), low = -inf, high = inf) + obj.b1 = N.zeros(hidden_size) + obj.b2 = N.zeros(input_size) + if seed is not None: + self.seed(seed) + obj.__hide__ = ['params'] + + def build_regularization(self): + return T.zero() # no regularization! + + +class SigmoidXEDenoisingAA(DenoisingAA): + + def build_corrupted_input(self): + self.noise_level = theano.Member(T.scalar()) + return self.random.binomial(T.shape(self.input), 1, 1 - self.noise_level) * self.input + + def hid_activation_function(self, activation): + return NN.sigmoid(activation) + + def out_activation_function(self, activation): + return NN.sigmoid(activation) + + def build_reconstruction_costs(self, output): + reconstruction_cost_matrix = -(self.input * T.log(output) + (1 - self.input) * T.log(1 - output)) + return T.sum(reconstruction_cost_matrix, axis=1) + + def build_regularization(self): + self.l2_coef = theano.Member(T.scalar()) + if self.tie_weights: + return self.l2_coef * T.sum(self.w1 * self.w1) + else: + return self.l2_coef * T.sum(self.w1 * self.w1) + T.sum(self.w2 * self.w2) + + def _instance_initialize(self, obj, input_size = None, hidden_size = None, seed = None, **init): + init.setdefault('noise_level', 0) + init.setdefault('l2_coef', 0) + super(SigmoidXEDenoisingAA, self)._instance_initialize(obj, input_size, hidden_size, seed, **init) +