Mercurial > pylearn
diff sandbox/rbm/model.py @ 399:8796b91a9f09
RBM minibatch works
author | Joseph Turian <turian@gmail.com> |
---|---|
date | Tue, 08 Jul 2008 21:42:21 -0400 |
parents | 6e55ccb7e2bf |
children | 269d5c5a4209 |
line wrap: on
line diff
--- a/sandbox/rbm/model.py Tue Jul 08 20:48:56 2008 -0400 +++ b/sandbox/rbm/model.py Tue Jul 08 21:42:21 2008 -0400 @@ -43,16 +43,18 @@ def __init__(self): self.parameters = parameters.Parameters(randomly_initialize=True) - def update(self, instance): + def update(self, instances): """ Update the L{Model} using one training instance. @param instance: A dict from feature index to (non-zero) value. @todo: Should assert that nonzero_indices and zero_indices are correct (i.e. are truly nonzero/zero). """ - v0 = numpy.zeros((1, globals.INPUT_DIMENSION)) - for idx in instance.keys(): - v0[0][idx] = instance[idx] + v0 = numpy.zeros((len(instances), globals.INPUT_DIMENSION)) + minibatch = len(instances) + for i in range(minibatch): + for idx in instances[i].keys(): + v0[i][idx] = instances[i][idx] q0 = sigmoid(self.parameters.b + dot(v0, self.parameters.w)) h0 = sample(q0) @@ -60,15 +62,27 @@ v1 = sample(p0) q1 = sigmoid(self.parameters.b + dot(v1, self.parameters.w)) print - print "v[0]:", v0 - print "Q(h[0][i] = 1 | v[0]):", q0 - print "h[0]:", h0 - print "P(v[1][j] = 1 | h[0]):", p0 +# print "v[0]:", v0 +# print "Q(h[0][i] = 1 | v[0]):", q0 +# print "h[0]:", h0 +# print "P(v[1][j] = 1 | h[0]):", p0 print "XENT(P(v[1][j] = 1 | h[0]) | v0):", numpy.sum(crossentropy(p0, v0)) - print "v[1]:", v1 - print "Q(h[1][i] = 1 | v[1]):", q1 +# print "v[1]:", v1 +# print "Q(h[1][i] = 1 | v[1]):", q1 - self.parameters.w += LR * (dot(v0.T, h0) - dot(v1.T, q1)) - self.parameters.b += LR * (h0 - q1) - self.parameters.c += LR * (v0 - v1) +# print +# print v0.T.shape +# print h0.shape +# print dot(v0.T, h0).shape +# print self.parameters.w.shape + self.parameters.w += LR * (dot(v0.T, h0) - dot(v1.T, q1)) / minibatch +# print +# print h0.shape +# print q1.shape +# print self.parameters.b.shape + self.parameters.b += LR * numpy.sum(h0 - q1, axis=0) / minibatch +# print v0.shape, v1.shape +# print +# print self.parameters.c.shape + self.parameters.c += LR * numpy.sum(v0 - v1, axis=0) / minibatch # print self.parameters