Mercurial > pylearn
diff dataset.py @ 73:69f97aad3faf
Coded untested ApplyFunctionDataSet and CacheDataSet
author | bengioy@bengiomac.local |
---|---|
date | Sat, 03 May 2008 14:29:56 -0400 |
parents | 2b6656b2ef52 |
children | b4159cbdc06b |
line wrap: on
line diff
--- a/dataset.py Fri May 02 18:36:47 2008 -0400 +++ b/dataset.py Sat May 03 14:29:56 2008 -0400 @@ -227,7 +227,9 @@ self.n_batches_done+=1 if upper >= self.L and self.n_batches: self.next_row -= self.L - return minibatch + return DataSetFields(MinibatchDataSet(minibatch,self.dataset.valuesVStack, + self.dataset.valuesHStack), + minibatch.keys())) minibatches_fieldnames = None @@ -392,7 +394,8 @@ return MinibatchDataSet( Example(self.fieldNames(),[ self.valuesVStack(fieldname,field_values) for fieldname,field_values - in zip(self.fieldNames(),fields_values)])) + in zip(self.fieldNames(),fields_values)]), + self.valuesVStack,self.valuesHStack) # else check for a fieldname if self.hasFields(i): return self.minibatches(fieldnames=[i],minibatch_size=len(self),n_batches=1,offset=0).next()[0] @@ -609,9 +612,12 @@ return self.length def __getitem__(self,i): - if type(i) in (int,slice,list): - return DataSetFields(MinibatchDataSet( - Example(self._fields.keys(),[field[i] for field in self._fields])),self._fields) + if type(i) is int: + return Example(self._fields.keys(),[field[i] for field in self._fields]) + if type(i) in (slice,list): + return MinibatchDataSet(Example(self._fields.keys(), + [field[i] for field in self._fields]), + self.valuesVStack,self.valuesHStack) if self.hasFields(i): return self._fields[i] assert i in self.__dict__ # else it means we are trying to access a non-existing property @@ -643,7 +649,7 @@ [field[self.next_example:upper] for field in self.ds._fields]) self.next_example+=minibatch_size - return DataSetFields(MinibatchDataSet(minibatch),*fieldnames) + return minibatch return Iterator(self) @@ -716,11 +722,7 @@ return self def next(self): # concatenate all the fields of the minibatches - minibatch = reduce(LookupList.__add__,[iterator.next() for iterator in self.iterators]) - # and return a DataSetFields whose dataset is the transpose (=examples()) of this minibatch - return DataSetFields(MinibatchDataSet(minibatch,self.hsds.valuesVStack, - self.hsds.valuesHStack), - fieldnames if fieldnames else hsds.fieldNames()) + return reduce(LookupList.__add__,[iterator.next() for iterator in self.iterators]) assert self.hasfields(fieldnames) # find out which underlying datasets are necessary to service the required fields @@ -849,11 +851,10 @@ while self.n_left_in_mb>0: self.move_to_next_dataset() extra_mb.append(self.next_iterator.next()) - examples = Example(names, + mb = Example(fieldnames, [dataset.valuesVStack(name, [mb[name]]+[b[name] for b in extra_mb]) for name in fieldnames]) - mb = DataSetFields(MinibatchDataSet(examples),fieldnames) self.next_row+=minibatch_size self.next_dataset_row+=minibatch_size @@ -926,7 +927,8 @@ [self.data[i,self.fields_columns[f]] for f in fieldnames]) if type(i) in (slice,list): return MinibatchDataSet(Example(fieldnames, - [self.data[i,self.fields_columns[f]] for f in fieldnames])) + [self.data[i,self.fields_columns[f]] for f in fieldnames]), + self.valuesVStack,self.valuesHStack) # else check for a fieldname if self.hasFields(i): return Example([i],[self.data[self.fields_columns[i],:]]) @@ -967,20 +969,140 @@ Optionally, for finite-length dataset, all the values can be computed (and cached) upon construction of the CachedDataSet, rather at the first access. + + TODO: add disk-buffering capability, so that when the cache becomes too + big for memory, we cache things on disk, trying to keep in memory only + the record most likely to be accessed next. """ + def __init__(self,source_dataset,cache_all_upon_construction=False): + self.source_dataset=source_dataset + self.cache_all_upon_construction=cache_all_upon_construction + if cache_all_upon_construction: + self.cached_examples = zip(*source_dataset.minibatches(minibatch_size=len(source_dataset)).__iter__().next()) + else: + self.cached_examples = [] + self.fieldNames = source_dataset.fieldNames + self.hasFields = source_dataset.hasFields + self.valuesHStack = source_dataset.valuesHStack + self.valuesVStack = source_dataset.valuesVStack + + def __len__(self): + return len(self.source_dataset) + + def minibatches_nowrap(self,fieldnames,minibatch_size,n_batches,offset): + class CacheIterator(object): + def __init__(self,dataset): + self.dataset=dataset + self.current=offset + def __iter__(self): return self + def next(self): + upper = self.current+minibatch_size + cache_len = len(self.dataset.cached_examples) + if upper>=cache_len: # whole minibatch is not already in cache + # cache everything from current length to upper + for example in self.dataset.source_dataset[cache_len:upper]: + self.dataset.cached_examples.append(example) + all_fields_minibatch = Example(self.dataset.fieldNames(), + self.dataset.cached_examples[self.current:self.current+minibatch_size]) + if self.dataset.fieldNames()==fieldnames: + return all_fields_minibatch + return Example(fieldnames,[all_fields_minibatch[name] for name in fieldnames]) + return CacheIterator(self) + + class ApplyFunctionDataSet(DataSet): """ A dataset that contains as fields the results of applying a given function example-wise or minibatch-wise to all the fields of an input dataset. The output of the function should be an iterable (e.g. a list or a LookupList) - over the resulting values. In minibatch mode, the function is expected - to work on minibatches (takes a minibatch in input and returns a minibatch - in output). + over the resulting values. + + In minibatch mode, the function is expected to work on minibatches (takes + a minibatch in input and returns a minibatch in output). More precisely, + it means that each element of the input or output list should be iterable + and indexable over the individual example values (typically these + elements will be numpy arrays). All of the elements in the input and + output lists should have the same length, which is the length of the + minibatch. The function is applied each time an example or a minibatch is accessed. To avoid re-doing computation, wrap this dataset inside a CachedDataSet. + + If the values_{h,v}stack functions are not provided, then + the input_dataset.values{H,V}Stack functions are used by default. """ + def __init__(self,input_dataset,function,output_names,minibatch_mode=True, + values_hstack=None,values_vstack, + description=None,fieldtypes=None): + """ + Constructor takes an input dataset that has as many fields as the function + expects as inputs. The resulting dataset has as many fields as the function + produces as outputs, and that should correspond to the number of output names + (provided in a list). + + Note that the expected semantics of the function differs in minibatch mode + (it takes minibatches of inputs and produces minibatches of outputs, as + documented in the class comment). + """ + self.input_dataset=input_dataset + self.function=function + self.output_names=output_names + self.minibatch_mode=minibatch_mode + DataSet.__init__(description,fieldtypes) + self.valuesHStack = values_hstack if values_hstack else input_dataset.valuesHStack + self.valuesVStack = values_vstack if values_vstack else input_dataset.valuesVStack + + def __len__(self): + return len(self.input_dataset) + + def fieldnames(self): + return self.output_names + + def minibatches_nowrap(self,fieldnames,minibatch_size,n_batches,offset): + class ApplyFunctionIterator(object): + def __init__(self,output_dataset): + self.input_dataset=output_dataset.input_dataset + self.output_dataset=output_dataset + self.input_iterator=input_dataset.minibatches(minibatch_size=minibatch_size, + n_batches=n_batches,offset=offset).__iter__() + + def __iter__(self): return self + + def next(self): + function_inputs = self.input_iterator.next() + all_output_names = self.output_dataset.output_names + if self.output_dataset.minibatch_mode: + function_outputs = self.output_dataset.function(function_inputs) + else: + input_examples = zip(*function_inputs) + output_examples = [self.output_dataset.function(input_example) + for input_example in input_examples] + function_outputs = [self.output_dataset.valuesVStack(name,values) + for name,values in zip(all_output_names, + zip(*output_examples))] + all_outputs = Example(all_output_names,function_outputs) + if fieldnames==all_output_names: + return all_outputs + return Example(fieldnames,[all_outputs[name] for name in fieldnames]) + + return ApplyFunctionIterator(self.input_dataset,self) + + def __iter__(self): # only implemented for increased efficiency + class ApplyFunctionSingleExampleIterator(object): + def __init__(self,output_dataset): + self.current=0 + self.output_dataset=output_dataset + self.input_iterator=output_dataset.input_dataset.__iter__() + def __iter__(self): return self + def next(self): + function_inputs = self.input_iterator.next() + if self.output_dataset.minibatch_mode: + function_outputs = [output[0] for output in self.output_dataset.function(function_inputs)] + else: + function_outputs = self.output_dataset.function(function_inputs) + return Example(self.output_dataset.output_names,function_outputs) + return ApplyFunctionSingleExampleIterator(self) def supervised_learning_dataset(src_dataset,input_fields,target_fields,weight_field=None):