Mercurial > pylearn
diff doc/v2_planning/arch_src/plugin_JB.py @ 1212:478bb1f8215c
plugin_JB - added SPAWN control element and demo program
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Wed, 22 Sep 2010 01:37:55 -0400 |
parents | |
children | 9fac28d80fb7 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/doc/v2_planning/arch_src/plugin_JB.py Wed Sep 22 01:37:55 2010 -0400 @@ -0,0 +1,366 @@ +"""plugin_JB - draft of potential library architecture using iterators + +This strategy makes use of a simple imperative language whose statements are python function +calls to create learning algorithms that can be manipulated and executed in several desirable +ways. + +The training procedure for a PCA module is easy to express: + + # allocate the relevant modules + dataset = Dataset(numpy.random.RandomState(123).randn(13,1)) + pca = PCA_Analysis() + pca_batchsize=1000 + + # define the control-flow of the algorithm + train_pca = SEQ([ + BUFFER_REPEAT(pca_batchsize, CALL(dataset.next)), + FILT(pca.analyze)]) + + # run the program + train_pca.run() + +The CALL, SEQ, FILT, and BUFFER_REPEAT are control-flow elements. The control-flow elements I +defined so far are: + +- CALL - a basic statement, just calls a python function +- FILT - like call, but passes the return value of the last CALL or FILT to the python function +- SEQ - a sequence of elements to run in order +- REPEAT - do something N times (and return None or maybe the last CALL?) +- BUFFER_REPEAT - do something N times and accumulate the return value from each iter +- LOOP - do something an infinite number of times +- CHOOSE - like a switch statement (should rename to SWITCH) +- WEAVE - interleave execution of multiple control-flow elements +- POPEN - launch a process and return its status when it's complete +- PRINT - a shortcut for CALL(print_obj) + + +We don't have many requirements per-se for the architecture, but I think this design respects +and realizes all of them. +The advantages of this approach are: + + - algorithms (including partially run ones) are COPYABLE, and SERIALIZABLE + + - algorithms can be executed without seizing control of the python process (the run() + method does this, but if you look inside it you'll see it's a simple for loop) + + - it is easy to execute an algorithm step by step in a main loop that also checks for + network or filesystem events related to e.g. job management. + + - the library can provide learning algorithms via control-flow templates, and the user can + edit them (with search/replace calls) to include HOOKS, and DIAGNOSTIC plug-in + functionality + + e.g. prog.find(CALL(cd1_update, layer=layer1)).replace_with( + SEQ([CALL(cd1_update, layer=layer1), CALL(my_debugfn)])) + + - user can print the 'program code' of an algorithm built from library pieces + + - program can be optimized automatically. + + - e.g. BUFFER(N, CALL(dataset.next)) could be replaced if dataset.next implements the + right attribute/protocol for 'bufferable' or something. + + - e.g. SEQ([a,b,c,d]) could be compiled to a single CALL to a Theano-compiled function + if a, b, c, and d are calls to callable objects that export something like a + 'theano_SEQ' interface + + +""" + +__license__ = 'TODO' +__copyright__ = 'TODO' + +import cPickle, copy, os, subprocess, sys, time +import numpy + +#################################################### +# CONTROL-FLOW CONSTRUCTS + +class INCOMPLETE: + """Return value for Element.step""" + +class ELEMENT(object): + """ + Base class for control flow elements (e.g. CALL, REPEAT, etc.) + + The design is that every element has a driver, that is another element, or the iterator + implementation in the ELEMENT class. + + the driver calls start when entering a new control element + - this would be called once per e.g. outer loop iteration + + the driver calls step to advance the control element + - which returns INCOMPLETE + - which returns any other object to indicate completion + """ + + # subclasses should override these methods: + def start(self, arg): + pass + def step(self): + pass + + # subclasses should typically not override these: + def run(self, arg=None, n_steps=float('inf')): + self.start(arg) + i = 0 + r = self.step() + while r is INCOMPLETE: + i += 1 + #TODO make sure there is not an off-by-one error + if i > n_steps: + break + r = self.step() + return r + +class BUFFER_REPEAT(ELEMENT): + """ + Accumulate a number of return values into one list / array. + + The source of return values `src` is a control element that will be restarted repeatedly in + order to fulfil the requiement of gathering N samples. + + TODO: support accumulating of tuples of arrays + """ + def __init__(self, N, src, storage=None): + """ + TODO: use preallocated `storage` + """ + self.N = N + self.n = 0 + self.src = src + self.storage = storage + self.src.start(None) + if self.storage != None: + raise NotImplementedError() + def start(self, arg): + self.buf = [None] * self.N + self.n = 0 + self.finished = False + def step(self): + assert not self.finished + r = self.src.step() + if r is INCOMPLETE: + return r + self.src.start(None) # restart our stream + self.buf[self.n] = r + self.n += 1 + if self.n == self.N: + self.finished = True + return self.buf + else: + return INCOMPLETE + assert 0 + +class CALL(ELEMENT): + """ + Control flow terminal - call a python function or method. + + Returns the return value of the call. + """ + def __init__(self, fn, *args, **kwargs): + self.fn = fn + self.args = args + self.kwargs=kwargs + self.use_start_arg = kwargs.pop('use_start_arg', False) + def start(self, arg): + self.start_arg = arg + self.finished = False + return self + def step(self): + assert not self.finished + self.finished = True + if self.use_start_arg: + if self.args: + raise TypeError('cant get positional args both ways') + return self.fn(self.start_arg, **self.kwargs) + else: + return self.fn(*self.args, **self.kwargs) + def __getstate__(self): + rval = dict(self.__dict__) + if type(self.fn) is type(self.step): #instancemethod + fn = rval.pop('fn') + rval['i fn'] = fn.im_func, fn.im_self, fn.im_class + return rval + def __setstate__(self, dct): + if 'i fn' in dct: + dct['fn'] = type(self.step)(*dct.pop('i fn')) + self.__dict__.update(dct) + +def FILT(fn, **kwargs): + """ + Return a CALL object that uses the return value from the previous CALL as the first and + only positional argument. + """ + return CALL(fn, use_start_arg=True, **kwargs) + +def CHOOSE(which, options): + """ + Execute one out of a number of optional control flow paths + """ + raise NotImplementedError() + +def LOOP(elements): + #TODO: implement a true infinite loop + try: + iter(elements) + return REPEAT(sys.maxint, elements) + except TypeError: + return REPEAT(sys.maxint, [elements]) + +class REPEAT(ELEMENT): + def __init__(self, N, elements, pass_rvals=False): + self.N = N + self.elements = elements + self.pass_rvals = pass_rvals + + #TODO: check for N being callable + def start(self, arg): + self.n = 0 #loop iteration + self.idx = 0 #element idx + self.finished = False + self.elements[0].start(arg) + def step(self): + assert not self.finished + r = self.elements[self.idx].step() + if r is INCOMPLETE: + return INCOMPLETE + self.idx += 1 + if self.idx < len(self.elements): + self.elements[self.idx].start(r) + return INCOMPLETE + self.n += 1 + if self.n < self.N: + self.idx = 0 + self.elements[self.idx].start(r) + return INCOMPLETE + else: + self.finished = True + return r + +def SEQ(elements): + return REPEAT(1, elements) + +class WEAVE(ELEMENT): + """ + Interleave execution of a number of elements. + + TODO: allow a schedule (at least relative frequency) of elements from each program + """ + def __init__(self, n_required, elements): + self.elements = elements + if n_required == -1: + self.n_required = len(elements) + else: + self.n_required = n_required + def start(self, arg): + for el in self.elements: + el.start(arg) + self.elem_finished = [0] * len(self.elements) + self.idx = 0 + self.finished= False + def step(self): + assert not self.finished # if this is triggered, we have a broken driver + + #start with this check in case there were no elements + # it's possible for the number of finished elements to exceed the threshold + if sum(self.elem_finished) >= self.n_required: + self.finished = True + return None + + # step the active element + r = self.elements[self.idx].step() + + if r is not INCOMPLETE: + self.elem_finished[self.idx] = True + + # check for completion + if sum(self.elem_finished) >= self.n_required: + self.finished = True + return None + + # advance to the next un-finished element + self.idx = (self.idx+1) % len(self.elements) + while self.elem_finished[self.idx]: + self.idx = (self.idx+1) % len(self.elements) + + return INCOMPLETE + +class POPEN(ELEMENT): + def __init__(self, args): + self.args = args + def start(self, arg): + self.p = subprocess.Popen(self.args) + def step(self): + r = self.p.poll() + if r is None: + return INCOMPLETE + return r + +def PRINT(obj): + return CALL(print_obj, obj) + +class SPAWN(ELEMENT): + SUCCESS = 0 + def __init__(self, data, prog): + self.data = data + self.prog = prog + def start(self, arg): + # pickle the (data, prog) pair + s = cPickle.dumps((self.data, self.prog)) + + # call python with a stub function that + # unpickles the data, prog pair and starts running the prog + self.rpipe, wpipe = os.pipe() + code = 'import sys, plugin_JB; sys.exit(plugin_JB.SPAWN._main(%i))'%wpipe + self.p = subprocess.Popen( + ['python', '-c', code], + stdin=subprocess.PIPE) + # send the data and prog to the other process + self.p.stdin.write(s) + self.finished= False + + #TODO: send over tgz of the modules this code needs + + #TODO: When the client process is on a different machine, negotiate with the client + # process to determine which modules it needs, and send over the code for pure python + # ones. Make sure versions match for non-pure python ones. + + def step(self): + assert not self.finished + r = self.p.poll() + if r is None: + return INCOMPLETE # typical exit case + self.finished = True + if r != self.SUCCESS: + print "UH OH", r # TODO - ??? + rfile = os.fdopen(self.rpipe) + # recv the revised of the data dictionary + data = cPickle.load(rfile) + # modify the data dict in-place + # for new values to be visible to other components + self.data.update(data) + rfile.close() + #TODO: return something meaningful? like r? + return None + + @staticmethod + def _main(wpipe): + #TODO: unpack and install tgz of the modules this code needs + data, prog = cPickle.load(sys.stdin) + rval = prog.run() + os.write(wpipe, cPickle.dumps(data)) + return SPAWN.SUCCESS + #os.close(wpipe) + + +def print_obj(obj): + print obj +def print_obj_attr(obj, attr): + print getattr(obj, attr) +def no_op(*args, **kwargs): + pass + +def importable_fn(d): + d['new key'] = len(d) +