Mercurial > pylearn
diff mlp.py @ 134:3f4e5c9bdc5e
Fixes to ApplyFunctionDataSet and other things to make learner and mlp work
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Fri, 09 May 2008 17:38:57 -0400 |
parents | b4657441dd65 |
children | ae5651a3696b |
line wrap: on
line diff
--- a/mlp.py Fri May 09 13:38:54 2008 -0400 +++ b/mlp.py Fri May 09 17:38:57 2008 -0400 @@ -68,7 +68,7 @@ """ - def __init__(self,n_hidden,n_classes,learning_rate,max_n_epochs,init_range=1.,n_inputs=None,minibatch_size=None): + def __init__(self,n_hidden,n_classes,learning_rate,max_n_epochs,L2_regularizer=0,init_range=1.,n_inputs=None,minibatch_size=None): self._n_inputs = n_inputs self._n_outputs = n_classes self._n_hidden = n_hidden @@ -76,9 +76,11 @@ self._max_n_epochs = max_n_epochs self._minibatch_size = minibatch_size self.learning_rate = learning_rate # this is the float + self.L2_regularizer = L2_regularizer self._learning_rate = t.scalar('learning_rate') # this is the symbol self._input = t.matrix('input') # n_examples x n_inputs - self._target = t.ivector('target') # n_examples x n_outputs + self._target = t.imatrix('target') # n_examples x 1 + self._target_vector = self._target[:,0] self._L2_regularizer = t.scalar('L2_regularizer') self._W1 = t.matrix('W1') self._W2 = t.matrix('W2') @@ -86,9 +88,9 @@ self._b2 = t.row('b2') self._regularization_term = self._L2_regularizer * (t.sum(self._W1*self._W1) + t.sum(self._W2*self._W2)) self._output_activations =self._b2+t.dot(t.tanh(self._b1+t.dot(self._input,self._W1.T)),self._W2.T) - self._nll,self._output = crossentropy_softmax_1hot(self._output_activations,self._target) - self._output_class = t.argmax(self._output,1) - self._class_error = self._output_class != self._target + self._nll,self._output = crossentropy_softmax_1hot(self._output_activations,self._target_vector) + self._output_class, self._max_output = t.argmax(self._output,1) + self._class_error = t.neq(self._output_class,self._target_vector) self._minibatch_criterion = self._nll + self._regularization_term / t.shape(self._input)[0] OnlineGradientTLearner.__init__(self) @@ -98,15 +100,6 @@ def parameterAttributes(self): return ["b1","W1", "b2", "W2"] - def useInputAttributes(self): - return self.parameterAttributes() - - def useOutputAttributes(self): - return [] - - def updateInputAttributes(self): - return self.parameterAttributes() + ["L2_regularizer"] - def updateMinibatchInputFields(self): return ["input","target"] @@ -126,8 +119,8 @@ minibatch_n_inputs = minibatch["input"].shape[1] if not self._n_inputs: self._n_inputs = minibatch_n_inputs - self.b1 = numpy.zeros(self._n_hidden) - self.b2 = numpy.zeros(self._n_outputs) + self.b1 = numpy.zeros((1,self._n_hidden)) + self.b2 = numpy.zeros((1,self._n_outputs)) self.forget() elif self._n_inputs!=minibatch_n_inputs: # if the input changes dimension on the fly, we resize and forget everything