Mercurial > pylearn
diff sandbox/simple_autoassociator/parameters.py @ 393:36baeb7125a4
Made sandbox directory
author | Joseph Turian <turian@gmail.com> |
---|---|
date | Tue, 08 Jul 2008 18:46:26 -0400 |
parents | simple_autoassociator/parameters.py@ec8aadb6694d |
children | 8cc11ac97087 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/sandbox/simple_autoassociator/parameters.py Tue Jul 08 18:46:26 2008 -0400 @@ -0,0 +1,36 @@ +""" +Parameters (weights) used by the L{Model}. +""" + +import numpy +import globals + +class Parameters: + """ + Parameters used by the L{Model}. + """ + def __init__(self, input_dimension=globals.INPUT_DIMENSION, hidden_dimension=globals.HIDDEN_DIMENSION, randomly_initialize=False, seed=globals.SEED): + """ + Initialize L{Model} parameters. + @param randomly_initialize: If True, then randomly initialize + according to the given seed. If False, then just use zeroes. + """ + if randomly_initialize: + numpy.random.seed(seed) + self.w1 = (numpy.random.rand(input_dimension, hidden_dimension)-0.5)/input_dimension + self.w2 = (numpy.random.rand(hidden_dimension, input_dimension)-0.5)/hidden_dimension + self.b1 = numpy.zeros(hidden_dimension) + self.b2 = numpy.zeros(input_dimension) + else: + self.w1 = numpy.zeros((input_dimension, hidden_dimension)) + self.w2 = numpy.zeros((hidden_dimension, input_dimension)) + self.b1 = numpy.zeros(hidden_dimension) + self.b2 = numpy.zeros(input_dimension) + + def __str__(self): + s = "" + s += "w1: %s\n" % self.w1 + s += "b1: %s\n" % self.b1 + s += "w2: %s\n" % self.w2 + s += "b2: %s\n" % self.b2 + return s