Mercurial > pylearn
diff gradient_learner.py @ 20:266c68cb6136
Minor editions, plus adding untested ApplyFunctionDataset for GradientLearner in the works.
author | bengioy@bengiomac.local |
---|---|
date | Mon, 07 Apr 2008 09:48:39 -0400 |
parents | 5ede27026e05 |
children | 526e192b0699 |
line wrap: on
line diff
--- a/gradient_learner.py Thu Mar 27 01:59:44 2008 -0400 +++ b/gradient_learner.py Mon Apr 07 09:48:39 2008 -0400 @@ -3,7 +3,6 @@ from tensor import * import gradient from compile import Function -from gradient_based_optimizer import * class GradientLearner(Learner): """ @@ -13,38 +12,49 @@ The user provides a Theano formula that maps the fields of a training example and parameters to output fields (for the use function), one of which must be a cost that is the training criterion to be minimized. Subclasses implement - a training strategy that uses the function to compute gradients and + a training strategy that uses the Theano formula to compute gradients and to compute outputs in the update method. The inputs, parameters, and outputs are lists of Theano tensors, while the example_wise_cost and regularization_term are Theano tensors. The user can specify a regularization coefficient that multiplies the regularization term. The training algorithm looks for parameters that minimize - regularization_coefficienet * regularization_term(parameters) + + regularization_coefficient * regularization_term(parameters) + sum_{inputs in training_set} example_wise_cost(inputs,parameters) i.e. the regularization_term should not depend on the inputs, only on the parameters. The learned function can map a subset of inputs to a subset of outputs (as long as the inputs subset includes all the inputs required in the Theano expression for the selected outputs). - It is assumed that all the inputs are provided in the training set, but - not necessarily when using the learned function. + It is assumed that all the inputs are provided in the training set (as dataset fields + with the corresponding name), but not necessarily when using the learned function. """ def __init__(self, inputs, parameters, outputs, example_wise_cost, regularization_term, - gradient_based_optimizer=StochasticGradientDescent(), regularization_coefficient = astensor(1.0)): + regularization_coefficient = astensor(1.0)): self.inputs = inputs self.outputs = outputs self.parameters = parameters self.example_wise_cost = example_wise_cost self.regularization_term = regularization_term - self.gradient_based_optimizer = gradient_based_optimizer self.regularization_coefficient = regularization_coefficient self.parameters_example_wise_gradient = gradient.grad(example_wise_cost, parameters) - self.parameters_regularization_gradient = gradient.grad(self.regularization_coefficient * regularization, parameters) + self.parameters_regularization_gradient = gradient.grad(self.regularization_coefficient * regularization_term, parameters) if example_wise_cost not in outputs: outputs.append(example_wise_cost) if regularization_term not in outputs: outputs.append(regularization_term) self.example_wise_gradient_fn = Function(inputs + parameters, [self.parameters_example_wise_gradient + self.parameters_regularization_gradient]) - self.use_functions = {frozenset([input.name for input in inputs]) : Function(inputs, outputs)} + self.use_functions = {frozenset([input.name for input in inputs]+[output.name for output in outputs]) + : Function(inputs, outputs)} - def update(self,training_set): - + def use(self,input_dataset,output_fields=None,copy_inputs=True): + # obtain the function that maps the desired inputs to desired outputs + input_fields = input_dataset.fieldNames() + if output_fields is None: output_fields = [output.name for output in outputs] + # handle special case of inputs that are directly copied into outputs + + use_function_key = input_fields+output_fields + if not self.use_functions.has_key(use_function_key): + self.use_function[use_function_key]=Function(input_fields,output_fields) + use_function = self.use_functions[use_function_key] + # return a virtual dataset that computes the outputs on demand + return input_dataset.apply_function(use_function,input_fields,output_fields,copy_inputs,accept_minibatches=???) +