Mercurial > pylearn
diff algorithms/aa.py @ 480:1babf35fcef5
merged
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Mon, 27 Oct 2008 17:29:03 -0400 |
parents | 8fcd0f3d9a17 |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/algorithms/aa.py Mon Oct 27 17:29:03 2008 -0400 @@ -0,0 +1,108 @@ + +import theano +from theano import tensor as T +from theano.tensor import nnet as NN +import numpy as N + +class AutoEncoder(theano.FancyModule): + + def __init__(self, input = None, regularize = True, tie_weights = True): + super(AutoEncoder, self).__init__() + + # MODEL CONFIGURATION + self.regularize = regularize + self.tie_weights = tie_weights + + # ACQUIRE/MAKE INPUT + if not input: + input = T.matrix('input') + self.input = theano.External(input) + + # HYPER-PARAMETERS + self.lr = theano.Member(T.scalar()) + + # PARAMETERS + self.w1 = theano.Member(T.matrix()) + if not tie_weights: + self.w2 = theano.Member(T.matrix()) + else: + self.w2 = self.w1.T + self.b1 = theano.Member(T.vector()) + self.b2 = theano.Member(T.vector()) + + # HIDDEN LAYER + self.hidden_activation = T.dot(input, self.w1) + self.b1 + self.hidden = self.build_hidden() + + # RECONSTRUCTION LAYER + self.output_activation = T.dot(self.hidden, self.w2) + self.b2 + self.output = self.build_output() + + # RECONSTRUCTION COST + self.reconstruction_cost = self.build_reconstruction_cost() + + # REGULARIZATION COST + self.regularization = self.build_regularization() + + # TOTAL COST + self.cost = self.reconstruction_cost + if self.regularize: + self.cost = self.cost + self.regularization + + # GRADIENTS AND UPDATES + if self.tie_weights: + self.params = self.w1, self.b1, self.b2 + else: + self.params = self.w1, self.w2, self.b1, self.b2 + gradients = T.grad(self.cost, self.params) + updates = dict((p, p - self.lr * g) for p, g in zip(self.params, gradients)) + + # INTERFACE METHODS + self.update = theano.Method(input, self.cost, updates) + self.reconstruction = theano.Method(input, self.output) + self.representation = theano.Method(input, self.hidden) + + def _instance_initialize(self, obj, input_size = None, hidden_size = None, seed = None, **init): + if (input_size is None) ^ (hidden_size is None): + raise ValueError("Must specify hidden_size and target_size or neither.") + super(AutoEncoder, self)._instance_initialize(obj, **init) + if seed is not None: + R = N.random.RandomState(seed) + else: + R = N.random + if input_size is not None: + sz = (input_size, hidden_size) + range = 1/N.sqrt(input_size) + obj.w1 = R.uniform(size = sz, low = -range, high = range) + if not self.tie_weights: + obj.w2 = R.uniform(size = list(reversed(sz)), low = -range, high = range) + obj.b1 = N.zeros(hidden_size) + obj.b2 = N.zeros(input_size) + + def build_regularization(self): + return T.zero() # no regularization! + + +class SigmoidXEAutoEncoder(AutoEncoder): + + def build_hidden(self): + return NN.sigmoid(self.hidden_activation) + + def build_output(self): + return NN.sigmoid(self.output_activation) + + def build_reconstruction_cost(self): + self.reconstruction_cost_matrix = self.input * T.log(self.output) + (1.0 - self.input) * T.log(1.0 - self.output) + self.reconstruction_costs = -T.sum(self.reconstruction_cost_matrix, axis=1) + return T.sum(self.reconstruction_costs) + + def build_regularization(self): + self.l2_coef = theano.Member(T.scalar()) + if self.tie_weights: + return self.l2_coef * T.sum(self.w1 * self.w1) + else: + return self.l2_coef * T.sum(self.w1 * self.w1) + T.sum(self.w2 * self.w2) + + def _instance_initialize(self, obj, input_size = None, hidden_size = None, **init): + init.setdefault('l2_coef', 0) + super(SigmoidXEAutoEncoder, self)._instance_initialize(obj, input_size, hidden_size, **init)