Mercurial > pylearn
diff _test_dataset.py @ 292:174374d59405
merge
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Fri, 06 Jun 2008 15:56:18 -0400 |
parents | 58e17421c69c 8e923cb2e8fc |
children | 4bfdda107a17 |
line wrap: on
line diff
--- a/_test_dataset.py Thu Jun 05 18:43:16 2008 -0400 +++ b/_test_dataset.py Fri Jun 06 15:56:18 2008 -0400 @@ -1,183 +1,442 @@ +#!/bin/env python from dataset import * from math import * -import unittest -import sys -import numpy as N +import numpy,unittest +from misc import * + +def have_raised(to_eval, **var): + have_thrown = False + try: + eval(to_eval) + except : + have_thrown = True + return have_thrown + +def have_raised2(f, *args, **kwargs): + have_thrown = False + try: + f(*args, **kwargs) + except : + have_thrown = True + return have_thrown + +def test1(): + print "test1" + global a,ds + a = numpy.random.rand(10,4) + print a + ds = ArrayDataSet(a,{'x':slice(3),'y':3,'z':[0,2]}) + print "len(ds)=",len(ds) + assert(len(ds)==10) + print "example 0 = ",ds[0] +# assert + print "x=",ds["x"] + print "x|y" + for x,y in ds("x","y"): + print x,y + minibatch_iterator = ds.minibatches(fieldnames=['z','y'],n_batches=1,minibatch_size=3,offset=4) + minibatch = minibatch_iterator.__iter__().next() + print "minibatch=",minibatch + for var in minibatch: + print "var=",var + print "take a slice and look at field y",ds[1:6:2]["y"] + + del a,ds,x,y,minibatch_iterator,minibatch,var -def _sum_all(a): - s=a - while isinstance(s,numpy.ndarray): - s=sum(s) - return s - -class T_arraydataset(unittest.TestCase): - def setUp(self): - numpy.random.seed(123456) +def test_iterate_over_examples(array,ds): +#not in doc!!! + i=0 + for example in range(len(ds)): + assert (ds[example]['x']==array[example][:3]).all() + assert ds[example]['y']==array[example][3] + assert (ds[example]['z']==array[example][[0,2]]).all() + i+=1 + assert i==len(ds) + del example,i + +# - for example in dataset: + i=0 + for example in ds: + assert len(example)==3 + assert (example['x']==array[i][:3]).all() + assert example['y']==array[i][3] + assert (example['z']==array[i][0:3:2]).all() + assert (numpy.append(example['x'],example['y'])==array[i]).all() + i+=1 + assert i==len(ds) + del example,i +# - for val1,val2,... in dataset: + i=0 + for x,y,z in ds: + assert (x==array[i][:3]).all() + assert y==array[i][3] + assert (z==array[i][0:3:2]).all() + assert (numpy.append(x,y)==array[i]).all() + i+=1 + assert i==len(ds) + del x,y,z,i + +# - for example in dataset(field1, field2,field3, ...): + i=0 + for example in ds('x','y','z'): + assert len(example)==3 + assert (example['x']==array[i][:3]).all() + assert example['y']==array[i][3] + assert (example['z']==array[i][0:3:2]).all() + assert (numpy.append(example['x'],example['y'])==array[i]).all() + i+=1 + assert i==len(ds) + del example,i + i=0 + for example in ds('y','x'): + assert len(example)==2 + assert (example['x']==array[i][:3]).all() + assert example['y']==array[i][3] + assert (numpy.append(example['x'],example['y'])==array[i]).all() + i+=1 + assert i==len(ds) + del example,i - def test_ctor_len(self): - n = numpy.random.rand(8,3) - a=ArrayDataSet(n) - self.failUnless(a.data is n) - self.failUnless(a.fields is None) +# - for val1,val2,val3 in dataset(field1, field2,field3): + i=0 + for x,y,z in ds('x','y','z'): + assert (x==array[i][:3]).all() + assert y==array[i][3] + assert (z==array[i][0:3:2]).all() + assert (numpy.append(x,y)==array[i]).all() + i+=1 + assert i==len(ds) + del x,y,z,i + i=0 + for y,x in ds('y','x',): + assert (x==array[i][:3]).all() + assert y==array[i][3] + assert (numpy.append(x,y)==array[i]).all() + i+=1 + assert i==len(ds) + del x,y,i - self.failUnless(len(a) == n.shape[0]) - self.failUnless(a[0].shape == (n.shape[1],)) + def test_minibatch_size(minibatch,minibatch_size,len_ds,nb_field,nb_iter_finished): + ##full minibatch or the last minibatch + for idx in range(nb_field): + test_minibatch_field_size(minibatch[idx],minibatch_size,len_ds,nb_iter_finished) + del idx + def test_minibatch_field_size(minibatch_field,minibatch_size,len_ds,nb_iter_finished): + assert len(minibatch_field)==minibatch_size or ((nb_iter_finished*minibatch_size+len(minibatch_field))==len_ds and len(minibatch_field)<minibatch_size) + +# - for minibatch in dataset.minibatches([field1, field2, ...],minibatch_size=N): + i=0 + mi=0 + m=ds.minibatches(['x','z'], minibatch_size=3) + assert isinstance(m,DataSet.MinibatchWrapAroundIterator) + for minibatch in m: + assert isinstance(minibatch,DataSetFields) + assert len(minibatch)==2 + test_minibatch_size(minibatch,m.minibatch_size,len(ds),2,mi) + if type(ds)==ArrayDataSet: + assert (minibatch[0][:,::2]==minibatch[1]).all() + else: + for j in xrange(len(minibatch[0])): + (minibatch[0][j][::2]==minibatch[1][j]).all() + mi+=1 + i+=len(minibatch[0]) + assert i==len(ds) + assert mi==4 + del minibatch,i,m,mi - def test_iter(self): - arr = numpy.random.rand(8,3) - a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,3)}) - for i, example in enumerate(a): - self.failUnless(numpy.all( example['x'] == arr[i,:2])) - self.failUnless(numpy.all( example['y'] == arr[i,1:3])) + i=0 + mi=0 + m=ds.minibatches(['x','y'], minibatch_size=3) + assert isinstance(m,DataSet.MinibatchWrapAroundIterator) + for minibatch in m: + assert len(minibatch)==2 + test_minibatch_size(minibatch,m.minibatch_size,len(ds),2,mi) + mi+=1 + for id in range(len(minibatch[0])): + assert (numpy.append(minibatch[0][id],minibatch[1][id])==array[i]).all() + i+=1 + assert i==len(ds) + assert mi==4 + del minibatch,i,id,m,mi - def test_zip(self): - arr = numpy.random.rand(8,3) - a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,3)}) - for i, x in enumerate(a.zip("x")): - self.failUnless(numpy.all( x == arr[i,:2])) +# - for mini1,mini2,mini3 in dataset.minibatches([field1, field2, field3], minibatch_size=N): + i=0 + mi=0 + m=ds.minibatches(['x','z'], minibatch_size=3) + assert isinstance(m,DataSet.MinibatchWrapAroundIterator) + for x,z in m: + test_minibatch_field_size(x,m.minibatch_size,len(ds),mi) + test_minibatch_field_size(z,m.minibatch_size,len(ds),mi) + for id in range(len(x)): + assert (x[id][::2]==z[id]).all() + i+=1 + mi+=1 + assert i==len(ds) + assert mi==4 + del x,z,i,m,mi + i=0 + mi=0 + m=ds.minibatches(['x','y'], minibatch_size=3) + for x,y in m: + test_minibatch_field_size(x,m.minibatch_size,len(ds),mi) + test_minibatch_field_size(y,m.minibatch_size,len(ds),mi) + mi+=1 + for id in range(len(x)): + assert (numpy.append(x[id],y[id])==array[i]).all() + i+=1 + assert i==len(ds) + assert mi==4 + del x,y,i,id,m,mi + +#not in doc + i=0 + m=ds.minibatches(['x','y'],n_batches=1,minibatch_size=3,offset=4) + assert isinstance(m,DataSet.MinibatchWrapAroundIterator) + for x,y in m: + assert len(x)==m.minibatch_size + assert len(y)==m.minibatch_size + for id in range(m.minibatch_size): + assert (numpy.append(x[id],y[id])==array[i+4]).all() + i+=1 + assert i==m.n_batches*m.minibatch_size + del x,y,i,id,m - def test_minibatch_basic(self): - arr = numpy.random.rand(10,4) - a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,4)}) - for i, mb in enumerate(a.minibatches(minibatch_size=2)): #all fields - self.failUnless(numpy.all( mb['x'] == arr[i*2:i*2+2,0:2])) - self.failUnless(numpy.all( mb['y'] == arr[i*2:i*2+2,1:4])) + i=0 + m=ds.minibatches(['x','y'],n_batches=2,minibatch_size=3,offset=4) + assert isinstance(m,DataSet.MinibatchWrapAroundIterator) + for x,y in m: + assert len(x)==m.minibatch_size + assert len(y)==m.minibatch_size + for id in range(m.minibatch_size): + assert (numpy.append(x[id],y[id])==array[i+4]).all() + i+=1 + assert i==m.n_batches*m.minibatch_size + del x,y,i,id,m + + i=0 + m=ds.minibatches(['x','y'],n_batches=20,minibatch_size=3,offset=4) + assert isinstance(m,DataSet.MinibatchWrapAroundIterator) + for x,y in m: + assert len(x)==m.minibatch_size + assert len(y)==m.minibatch_size + for id in range(m.minibatch_size): + assert (numpy.append(x[id],y[id])==array[(i+4)%array.shape[0]]).all() + i+=1 + assert i==m.n_batches*m.minibatch_size + del x,y,i,id + + #@todo: we can't do minibatch bigger then the size of the dataset??? + assert have_raised2(ds.minibatches,['x','y'],n_batches=1,minibatch_size=len(array)+1,offset=0) + assert not have_raised2(ds.minibatches,['x','y'],n_batches=1,minibatch_size=len(array),offset=0) - def test_getattr(self): - arr = numpy.random.rand(10,4) - a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,4)}) - a_y = a.y - self.failUnless(numpy.all( a_y == arr[:,1:4])) +def test_ds_iterator(array,iterator1,iterator2,iterator3): + l=len(iterator1) + i=0 + for x,y in iterator1: + assert (x==array[i][:3]).all() + assert y==array[i][3] + assert (numpy.append(x,y)==array[i]).all() + i+=1 + assert i==l + i=0 + for y,z in iterator2: + assert y==array[i][3] + assert (z==array[i][0:3:2]).all() + i+=1 + assert i==l + i=0 + for x,y,z in iterator3: + assert (x==array[i][:3]).all() + assert y==array[i][3] + assert (z==array[i][0:3:2]).all() + assert (numpy.append(x,y)==array[i]).all() + i+=1 + assert i==l - def test_minibatch_wraparound_even(self): - arr = numpy.random.rand(10,4) - arr2 = ArrayDataSet.Iterator.matcat(arr,arr) +def test_getitem(array,ds): + def test_ds(orig,ds,index): + i=0 + assert len(ds)==len(index) + for x,z,y in ds('x','z','y'): + assert (orig[index[i]]['x']==array[index[i]][:3]).all() + assert (orig[index[i]]['x']==x).all() + assert orig[index[i]]['y']==array[index[i]][3] + assert orig[index[i]]['y']==y + assert (orig[index[i]]['z']==array[index[i]][0:3:2]).all() + assert (orig[index[i]]['z']==z).all() + i+=1 + del i + ds[0] + if len(ds)>2: + ds[:1] + ds[1:1] + ds[1:1:1] + if len(ds)>5: + ds[[1,2,3]] + for x in ds: + pass - a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,4)}) +#ds[:n] returns a dataset with the n first examples. + ds2=ds[:3] + assert isinstance(ds2,DataSet) + test_ds(ds,ds2,index=[0,1,2]) + del ds2 + +#ds[i1:i2:s]# returns a ds with the examples i1,i1+s,...i2-s. + ds2=ds[1:7:2] + assert isinstance(ds2,DataSet) + test_ds(ds,ds2,[1,3,5]) + del ds2 + +#ds[i] + ds2=ds[5] + assert isinstance(ds2,Example) + assert have_raised("var['ds']["+str(len(ds))+"]",ds=ds) # index not defined + assert not have_raised("var['ds']["+str(len(ds)-1)+"]",ds=ds) + del ds2 + +#ds[[i1,i2,...in]]# returns a ds with examples i1,i2,...in. + ds2=ds[[4,7,2,8]] + assert isinstance(ds2,DataSet) + test_ds(ds,ds2,[4,7,2,8]) + del ds2 - #print arr - for i, x in enumerate(a.minibatches(["x"], minibatch_size=2, n_batches=8)): - #print 'x' , x - self.failUnless(numpy.all( x == arr2[i*2:i*2+2,0:2])) + #ds.<property># returns the value of a property associated with + #the name <property>. The following properties should be supported: + # - 'description': a textual description or name for the ds + # - 'fieldtypes': a list of types (one per field) - def test_minibatch_wraparound_odd(self): - arr = numpy.random.rand(10,4) - arr2 = ArrayDataSet.Iterator.matcat(arr,arr) + #* ds1 | ds2 | ds3 == ds.hstack([ds1,ds2,ds3])#???? + #assert hstack([ds('x','y'),ds('z')])==ds + #hstack([ds('z','y'),ds('x')])==ds + assert have_raised2(hstack,[ds('x'),ds('x')]) + assert have_raised2(hstack,[ds('y','x'),ds('x')]) + assert not have_raised2(hstack,[ds('x'),ds('y')]) + + # i=0 + # for example in hstack([ds('x'),ds('y'),ds('z')]): + # example==ds[i] + # i+=1 + # del i,example + #* ds1 & ds2 & ds3 == ds.vstack([ds1,ds2,ds3])#???? - a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,4)}) - - for i, x in enumerate(a.minibatches(["x"], minibatch_size=3, n_batches=6)): - self.failUnless(numpy.all( x == arr2[i*3:i*3+3,0:2])) +def test_fields_fct(ds): + #@todo, fill correctly + assert len(ds.fields())==3 + i=0 + v=0 + for field in ds.fields(): + for field_value in field: # iterate over the values associated to that field for all the ds examples + v+=1 + i+=1 + assert i==3 + assert v==3*10 + del i,v + + i=0 + v=0 + for field in ds('x','z').fields(): + i+=1 + for val in field: + v+=1 + assert i==2 + assert v==2*10 + del i,v + + i=0 + v=0 + for field in ds.fields('x','y'): + i+=1 + for val in field: + v+=1 + assert i==2 + assert v==2*10 + del i,v + i=0 + v=0 + for field_examples in ds.fields(): + for example_value in field_examples: + v+=1 + i+=1 + assert i==3 + assert v==3*10 + del i,v + + assert ds == ds.fields().examples() + assert len(ds('x','y').fields()) == 2 + assert len(ds('x','z').fields()) == 2 + assert len(ds('y').fields()) == 1 -class T_renamingdataset(unittest.TestCase): - def setUp(self): - numpy.random.seed(123456) + del field +def test_all(array,ds): + assert len(ds)==10 + + test_iterate_over_examples(array, ds) + test_getitem(array, ds) + test_ds_iterator(array,ds('x','y'),ds('y','z'),ds('x','y','z')) + test_fields_fct(ds) + +class T_DataSet(unittest.TestCase): + def test_ArrayDataSet(self): + #don't test stream + #tested only with float value + #don't always test with y + #don't test missing value + #don't test with tuple + #don't test proterties + a2 = numpy.random.rand(10,4) + ds = ArrayDataSet(a2,{'x':slice(3),'y':3,'z':[0,2]})###???tuple not tested + ds = ArrayDataSet(a2,Example(['x','y','z'],[slice(3),3,[0,2]]))###???tuple not tested + #assert ds==a? should this work? + + test_all(a2,ds) + + del a2, ds + + def test_CachedDataSet(self): + a = numpy.random.rand(10,4) + ds1 = ArrayDataSet(a,Example(['x','y','z'],[slice(3),3,[0,2]]))###???tuple not tested + ds2 = CachedDataSet(ds1) + ds3 = CachedDataSet(ds1,cache_all_upon_construction=True) + + test_all(a,ds2) + test_all(a,ds3) + + del a,ds1,ds2,ds3 - def test_hasfield(self): - n = numpy.random.rand(3,8) - a=ArrayDataSet(data=n,fields={"x":slice(2),"y":slice(1,4),"z":slice(4,6)}) - b=a.rename({'xx':'x','zz':'z'}) - self.failUnless(b.hasFields('xx','zz') and not b.hasFields('x') and not b.hasFields('y')) + def test_DataSetFields(self): + raise NotImplementedError() -class T_applyfunctiondataset(unittest.TestCase): - def setUp(self): - numpy.random.seed(123456) + def test_ApplyFunctionDataSet(self): + a = numpy.random.rand(10,4) + a2 = a+1 + ds1 = ArrayDataSet(a,Example(['x','y','z'],[slice(3),3,[0,2]]))###???tuple not tested + + ds2 = ApplyFunctionDataSet(ds1,lambda x,y,z: (x+1,y+1,z+1), ['x','y','z'],minibatch_mode=False) + ds3 = ApplyFunctionDataSet(ds1,lambda x,y,z: (numpy.array(x)+1,numpy.array(y)+1,numpy.array(z)+1), + ['x','y','z'], + minibatch_mode=True) - def test_function(self): - n = numpy.random.rand(3,8) - a=ArrayDataSet(data=n,fields={"x":slice(2),"y":slice(1,4),"z":slice(4,6)}) - b=a.apply_function(lambda x,y: x+y,x+1, ['x','y'], ['x+y','x+1'], False,False,False) - print b.fieldNames() - print b('x+y') - + test_all(a2,ds2) + test_all(a2,ds3) + del a,ds1,ds2,ds3 - -# to be used with a any new dataset -class T_dataset_tester(object): - """ - This class' goal is to test any new dataset that is created - Tests are (will be!) designed to check the normal behaviours - of a dataset, as defined in dataset.py - """ + def test_FieldsSubsetDataSet(self): + raise NotImplementedError() + def test_MinibatchDataSet(self): + raise NotImplementedError() + def test_HStackedDataSet(self): + raise NotImplementedError() + def test_VStackedDataSet(self): + raise NotImplementedError() + def test_ArrayFieldsDataSet(self): + raise NotImplementedError() - def __init__(self,ds,runall=True) : - """if interested in only a subset of test, init with runall=False""" - self.ds = ds - - if runall : - self.test1_basicstats(ds) - self.test2_slicing(ds) - self.test3_fields_iterator_consistency(ds) - - def test1_basicstats(self,ds) : - """print basics stats on a dataset, like length""" - - print 'len(ds) = ',len(ds) - print 'num fields = ', len(ds.fieldNames()) - print 'types of field: ', - for k in ds.fieldNames() : - print type(ds[0](k)[0]), - print '' +if __name__=='__main__': + unittest.main() - def test2_slicing(self,ds) : - """test if slicing works properly""" - print 'testing slicing...', - sys.stdout.flush() - - middle = len(ds) / 2 - tenpercent = int(len(ds) * .1) - set1 = ds[:middle+tenpercent] - set2 = ds[middle-tenpercent:] - for k in range(tenpercent + tenpercent -1): - for k2 in ds.fieldNames() : - if type(set1[middle-tenpercent+k](k2)[0]) == N.ndarray : - for k3 in range(len(set1[middle-tenpercent+k](k2)[0])) : - assert set1[middle-tenpercent+k](k2)[0][k3] == set2[k](k2)[0][k3] - else : - assert set1[middle-tenpercent+k](k2)[0] == set2[k](k2)[0] - assert tenpercent > 1 - set3 = ds[middle-tenpercent:middle+tenpercent:2] - for k2 in ds.fieldNames() : - if type(set2[2](k2)[0]) == N.ndarray : - for k3 in range(len(set2[2](k2)[0])) : - assert set2[2](k2)[0][k3] == set3[1](k2)[0][k3] - else : - assert set2[2](k2)[0] == set3[1](k2)[0] - - print 'done' - - - def test3_fields_iterator_consistency(self,ds) : - """ check if the number of iterator corresponds to the number of fields""" - print 'testing fields/iterator consistency...', - sys.stdout.flush() - - # basic test - maxsize = min(len(ds)-1,100) - for iter in ds[:maxsize] : - assert len(iter) == len(ds.fieldNames()) - if len(ds.fieldNames()) == 1 : - print 'done' - return - - # with minibatches iterator - ds2 = ds.minibatches[:maxsize]([ds.fieldNames()[0],ds.fieldNames()[1]],minibatch_size=2) - for iter in ds2 : - assert len(iter) == 2 - - print 'done' - - - - - -################################################################### -# main -if __name__ == '__main__': - unittest.main() -