Mercurial > pylearn
comparison mlp.py @ 155:ae5651a3696b
new argmax calling convention
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Mon, 12 May 2008 16:16:32 -0400 |
parents | 3f4e5c9bdc5e |
children | e9a95e19e6f8 4090779e39a9 |
comparison
equal
deleted
inserted
replaced
151:39bb21348fdf | 155:ae5651a3696b |
---|---|
87 self._b1 = t.row('b1') | 87 self._b1 = t.row('b1') |
88 self._b2 = t.row('b2') | 88 self._b2 = t.row('b2') |
89 self._regularization_term = self._L2_regularizer * (t.sum(self._W1*self._W1) + t.sum(self._W2*self._W2)) | 89 self._regularization_term = self._L2_regularizer * (t.sum(self._W1*self._W1) + t.sum(self._W2*self._W2)) |
90 self._output_activations =self._b2+t.dot(t.tanh(self._b1+t.dot(self._input,self._W1.T)),self._W2.T) | 90 self._output_activations =self._b2+t.dot(t.tanh(self._b1+t.dot(self._input,self._W1.T)),self._W2.T) |
91 self._nll,self._output = crossentropy_softmax_1hot(self._output_activations,self._target_vector) | 91 self._nll,self._output = crossentropy_softmax_1hot(self._output_activations,self._target_vector) |
92 self._output_class, self._max_output = t.argmax(self._output,1) | 92 self._output_class = t.argmax(self._output,1) |
93 self._class_error = t.neq(self._output_class,self._target_vector) | 93 self._class_error = t.neq(self._output_class,self._target_vector) |
94 self._minibatch_criterion = self._nll + self._regularization_term / t.shape(self._input)[0] | 94 self._minibatch_criterion = self._nll + self._regularization_term / t.shape(self._input)[0] |
95 OnlineGradientTLearner.__init__(self) | 95 OnlineGradientTLearner.__init__(self) |
96 | 96 |
97 def attributeNames(self): | 97 def attributeNames(self): |