Mercurial > pylearn
comparison dataset.py @ 142:ad144fa72bf5
Automated merge with ssh://p-omega1@lgcm.iro.umontreal.ca/tlearn
author | Frederic Bastien <bastienf@iro.umontreal.ca> |
---|---|
date | Mon, 12 May 2008 14:15:16 -0400 |
parents | 3f4e5c9bdc5e f5f235bebee4 |
children | ceae4de18981 |
comparison
equal
deleted
inserted
replaced
134:3f4e5c9bdc5e | 142:ad144fa72bf5 |
---|---|
768 self.iterators=iterators | 768 self.iterators=iterators |
769 def __iter__(self): | 769 def __iter__(self): |
770 return self | 770 return self |
771 def next(self): | 771 def next(self): |
772 # concatenate all the fields of the minibatches | 772 # concatenate all the fields of the minibatches |
773 return reduce(LookupList.__add__,[iterator.next() for iterator in self.iterators]) | 773 l=LookupList() |
774 for iter in self.iterators: | |
775 l.append_lookuplist(iter.next()) | |
776 return l | |
774 | 777 |
775 assert self.hasFields(*fieldnames) | 778 assert self.hasFields(*fieldnames) |
776 # find out which underlying datasets are necessary to service the required fields | 779 # find out which underlying datasets are necessary to service the required fields |
777 # and construct corresponding minibatch iterators | 780 # and construct corresponding minibatch iterators |
778 if fieldnames: | 781 if fieldnames and fieldnames!=self.fieldNames(): |
779 datasets=set([]) | 782 datasets=set([]) |
780 fields_in_dataset=dict([(dataset,[]) for dataset in datasets]) | 783 fields_in_dataset=dict([(dataset,[]) for dataset in datasets]) |
781 for fieldname in fieldnames: | 784 for fieldname in fieldnames: |
782 dataset=self.datasets[self.fieldnames2dataset[fieldname]] | 785 dataset=self.datasets[self.fieldname2dataset[fieldname]] |
783 datasets.add(dataset) | 786 datasets.add(dataset) |
784 fields_in_dataset[dataset].append(fieldname) | 787 fields_in_dataset[dataset].append(fieldname) |
785 datasets=list(datasets) | 788 datasets=list(datasets) |
786 iterators=[dataset.minibatches(fields_in_dataset[dataset],minibatch_size,n_batches,offset) | 789 iterators=[dataset.minibatches(fields_in_dataset[dataset],minibatch_size,n_batches,offset) |
787 for dataset in datasets] | 790 for dataset in datasets] |