Mercurial > pylearn
comparison algorithms/daa.py @ 476:8fcd0f3d9a17
added a few algorithms
author | Olivier Breuleux <breuleuo@iro.umontreal.ca> |
---|---|
date | Mon, 27 Oct 2008 17:26:00 -0400 |
parents | |
children | b15dad843c8c |
comparison
equal
deleted
inserted
replaced
475:11e0357f06f4 | 476:8fcd0f3d9a17 |
---|---|
1 | |
2 import theano | |
3 from theano import tensor as T | |
4 from theano.tensor import nnet as NN | |
5 import numpy as N | |
6 | |
7 class DenoisingAA(T.RModule): | |
8 | |
9 def __init__(self, input = None, regularize = True, tie_weights = True): | |
10 super(DenoisingAA, self).__init__() | |
11 | |
12 # MODEL CONFIGURATION | |
13 self.regularize = regularize | |
14 self.tie_weights = tie_weights | |
15 | |
16 # ACQUIRE/MAKE INPUT | |
17 if not input: | |
18 input = T.matrix('input') | |
19 self.input = theano.External(input) | |
20 | |
21 # HYPER-PARAMETERS | |
22 self.lr = theano.Member(T.scalar()) | |
23 | |
24 # PARAMETERS | |
25 self.w1 = theano.Member(T.matrix()) | |
26 if not tie_weights: | |
27 self.w2 = theano.Member(T.matrix()) | |
28 else: | |
29 self.w2 = self.w1.T | |
30 self.b1 = theano.Member(T.vector()) | |
31 self.b2 = theano.Member(T.vector()) | |
32 | |
33 | |
34 # REGULARIZATION COST | |
35 self.regularization = self.build_regularization() | |
36 | |
37 | |
38 ### NOISELESS ### | |
39 | |
40 # HIDDEN LAYER | |
41 self.hidden_activation = T.dot(self.input, self.w1) + self.b1 | |
42 self.hidden = self.hid_activation_function(self.hidden_activation) | |
43 | |
44 # RECONSTRUCTION LAYER | |
45 self.output_activation = T.dot(self.hidden, self.w2) + self.b2 | |
46 self.output = self.out_activation_function(self.output_activation) | |
47 | |
48 # RECONSTRUCTION COST | |
49 self.reconstruction_costs = self.build_reconstruction_costs(self.output) | |
50 self.reconstruction_cost = T.mean(self.reconstruction_costs) | |
51 | |
52 # TOTAL COST | |
53 self.cost = self.reconstruction_cost | |
54 if self.regularize: | |
55 self.cost = self.cost + self.regularization | |
56 | |
57 | |
58 ### WITH NOISE ### | |
59 self.corrupted_input = self.build_corrupted_input() | |
60 | |
61 # HIDDEN LAYER | |
62 self.nhidden_activation = T.dot(self.corrupted_input, self.w1) + self.b1 | |
63 self.nhidden = self.hid_activation_function(self.nhidden_activation) | |
64 | |
65 # RECONSTRUCTION LAYER | |
66 self.noutput_activation = T.dot(self.nhidden, self.w2) + self.b2 | |
67 self.noutput = self.out_activation_function(self.noutput_activation) | |
68 | |
69 # RECONSTRUCTION COST | |
70 self.nreconstruction_costs = self.build_reconstruction_costs(self.noutput) | |
71 self.nreconstruction_cost = T.mean(self.nreconstruction_costs) | |
72 | |
73 # TOTAL COST | |
74 self.ncost = self.nreconstruction_cost | |
75 if self.regularize: | |
76 self.ncost = self.ncost + self.regularization | |
77 | |
78 | |
79 # GRADIENTS AND UPDATES | |
80 if self.tie_weights: | |
81 self.params = self.w1, self.b1, self.b2 | |
82 else: | |
83 self.params = self.w1, self.w2, self.b1, self.b2 | |
84 gradients = T.grad(self.ncost, self.params) | |
85 updates = dict((p, p - self.lr * g) for p, g in zip(self.params, gradients)) | |
86 | |
87 # INTERFACE METHODS | |
88 self.update = theano.Method(self.input, self.ncost, updates) | |
89 self.compute_cost = theano.Method(self.input, self.cost) | |
90 self.noisify = theano.Method(self.input, self.corrupted_input) | |
91 self.reconstruction = theano.Method(self.input, self.output) | |
92 self.representation = theano.Method(self.input, self.hidden) | |
93 self.reconstruction_through_noise = theano.Method(self.input, [self.corrupted_input, self.noutput]) | |
94 | |
95 def _instance_initialize(self, obj, input_size = None, hidden_size = None, seed = None, **init): | |
96 if (input_size is None) ^ (hidden_size is None): | |
97 raise ValueError("Must specify hidden_size and target_size or neither.") | |
98 super(DenoisingAA, self)._instance_initialize(obj, **init) | |
99 if seed is not None: | |
100 R = N.random.RandomState(seed) | |
101 else: | |
102 R = N.random | |
103 if input_size is not None: | |
104 sz = (input_size, hidden_size) | |
105 inf = 1/N.sqrt(input_size) | |
106 hif = 1/N.sqrt(hidden_size) | |
107 obj.w1 = R.uniform(size = sz, low = -inf, high = inf) | |
108 if not self.tie_weights: | |
109 obj.w2 = R.uniform(size = list(reversed(sz)), low = -inf, high = inf) | |
110 obj.b1 = N.zeros(hidden_size) | |
111 obj.b2 = N.zeros(input_size) | |
112 if seed is not None: | |
113 self.seed(seed) | |
114 obj.__hide__ = ['params'] | |
115 | |
116 def build_regularization(self): | |
117 return T.zero() # no regularization! | |
118 | |
119 | |
120 class SigmoidXEDenoisingAA(DenoisingAA): | |
121 | |
122 def build_corrupted_input(self): | |
123 self.noise_level = theano.Member(T.scalar()) | |
124 return self.random.binomial(T.shape(self.input), 1, 1 - self.noise_level) * self.input | |
125 | |
126 def hid_activation_function(self, activation): | |
127 return NN.sigmoid(activation) | |
128 | |
129 def out_activation_function(self, activation): | |
130 return NN.sigmoid(activation) | |
131 | |
132 def build_reconstruction_costs(self, output): | |
133 reconstruction_cost_matrix = -(self.input * T.log(output) + (1 - self.input) * T.log(1 - output)) | |
134 return T.sum(reconstruction_cost_matrix, axis=1) | |
135 | |
136 def build_regularization(self): | |
137 self.l2_coef = theano.Member(T.scalar()) | |
138 if self.tie_weights: | |
139 return self.l2_coef * T.sum(self.w1 * self.w1) | |
140 else: | |
141 return self.l2_coef * T.sum(self.w1 * self.w1) + T.sum(self.w2 * self.w2) | |
142 | |
143 def _instance_initialize(self, obj, input_size = None, hidden_size = None, seed = None, **init): | |
144 init.setdefault('noise_level', 0) | |
145 init.setdefault('l2_coef', 0) | |
146 super(SigmoidXEDenoisingAA, self)._instance_initialize(obj, input_size, hidden_size, seed, **init) | |
147 |