Mercurial > pylearn
comparison algorithms/aa.py @ 476:8fcd0f3d9a17
added a few algorithms
author | Olivier Breuleux <breuleuo@iro.umontreal.ca> |
---|---|
date | Mon, 27 Oct 2008 17:26:00 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
475:11e0357f06f4 | 476:8fcd0f3d9a17 |
---|---|
1 | |
2 import theano | |
3 from theano import tensor as T | |
4 from theano.tensor import nnet as NN | |
5 import numpy as N | |
6 | |
7 class AutoEncoder(theano.FancyModule): | |
8 | |
9 def __init__(self, input = None, regularize = True, tie_weights = True): | |
10 super(AutoEncoder, self).__init__() | |
11 | |
12 # MODEL CONFIGURATION | |
13 self.regularize = regularize | |
14 self.tie_weights = tie_weights | |
15 | |
16 # ACQUIRE/MAKE INPUT | |
17 if not input: | |
18 input = T.matrix('input') | |
19 self.input = theano.External(input) | |
20 | |
21 # HYPER-PARAMETERS | |
22 self.lr = theano.Member(T.scalar()) | |
23 | |
24 # PARAMETERS | |
25 self.w1 = theano.Member(T.matrix()) | |
26 if not tie_weights: | |
27 self.w2 = theano.Member(T.matrix()) | |
28 else: | |
29 self.w2 = self.w1.T | |
30 self.b1 = theano.Member(T.vector()) | |
31 self.b2 = theano.Member(T.vector()) | |
32 | |
33 # HIDDEN LAYER | |
34 self.hidden_activation = T.dot(input, self.w1) + self.b1 | |
35 self.hidden = self.build_hidden() | |
36 | |
37 # RECONSTRUCTION LAYER | |
38 self.output_activation = T.dot(self.hidden, self.w2) + self.b2 | |
39 self.output = self.build_output() | |
40 | |
41 # RECONSTRUCTION COST | |
42 self.reconstruction_cost = self.build_reconstruction_cost() | |
43 | |
44 # REGULARIZATION COST | |
45 self.regularization = self.build_regularization() | |
46 | |
47 # TOTAL COST | |
48 self.cost = self.reconstruction_cost | |
49 if self.regularize: | |
50 self.cost = self.cost + self.regularization | |
51 | |
52 # GRADIENTS AND UPDATES | |
53 if self.tie_weights: | |
54 self.params = self.w1, self.b1, self.b2 | |
55 else: | |
56 self.params = self.w1, self.w2, self.b1, self.b2 | |
57 gradients = T.grad(self.cost, self.params) | |
58 updates = dict((p, p - self.lr * g) for p, g in zip(self.params, gradients)) | |
59 | |
60 # INTERFACE METHODS | |
61 self.update = theano.Method(input, self.cost, updates) | |
62 self.reconstruction = theano.Method(input, self.output) | |
63 self.representation = theano.Method(input, self.hidden) | |
64 | |
65 def _instance_initialize(self, obj, input_size = None, hidden_size = None, seed = None, **init): | |
66 if (input_size is None) ^ (hidden_size is None): | |
67 raise ValueError("Must specify hidden_size and target_size or neither.") | |
68 super(AutoEncoder, self)._instance_initialize(obj, **init) | |
69 if seed is not None: | |
70 R = N.random.RandomState(seed) | |
71 else: | |
72 R = N.random | |
73 if input_size is not None: | |
74 sz = (input_size, hidden_size) | |
75 range = 1/N.sqrt(input_size) | |
76 obj.w1 = R.uniform(size = sz, low = -range, high = range) | |
77 if not self.tie_weights: | |
78 obj.w2 = R.uniform(size = list(reversed(sz)), low = -range, high = range) | |
79 obj.b1 = N.zeros(hidden_size) | |
80 obj.b2 = N.zeros(input_size) | |
81 | |
82 def build_regularization(self): | |
83 return T.zero() # no regularization! | |
84 | |
85 | |
86 class SigmoidXEAutoEncoder(AutoEncoder): | |
87 | |
88 def build_hidden(self): | |
89 return NN.sigmoid(self.hidden_activation) | |
90 | |
91 def build_output(self): | |
92 return NN.sigmoid(self.output_activation) | |
93 | |
94 def build_reconstruction_cost(self): | |
95 self.reconstruction_cost_matrix = self.input * T.log(self.output) + (1.0 - self.input) * T.log(1.0 - self.output) | |
96 self.reconstruction_costs = -T.sum(self.reconstruction_cost_matrix, axis=1) | |
97 return T.sum(self.reconstruction_costs) | |
98 | |
99 def build_regularization(self): | |
100 self.l2_coef = theano.Member(T.scalar()) | |
101 if self.tie_weights: | |
102 return self.l2_coef * T.sum(self.w1 * self.w1) | |
103 else: | |
104 return self.l2_coef * T.sum(self.w1 * self.w1) + T.sum(self.w2 * self.w2) | |
105 | |
106 def _instance_initialize(self, obj, input_size = None, hidden_size = None, **init): | |
107 init.setdefault('l2_coef', 0) | |
108 super(SigmoidXEAutoEncoder, self)._instance_initialize(obj, input_size, hidden_size, **init) |