comparison gradient_learner.py @ 13:633453635d51

Starting to work on gradient_based_learner.py
author bengioy@bengiomac.local
date Wed, 26 Mar 2008 21:38:08 -0400
parents
children 5ede27026e05
comparison
equal deleted inserted replaced
12:ff4e551490f1 13:633453635d51
1
2 from learner import *
3 from tensor import *
4 import gradient
5 from compile import Function
6 from gradient_based_optimizer import *
7
8 class GradientLearner(Learner):
9 """
10 Generic Learner for gradient-based optimization of a training criterion
11 that can consist in two parts, an additive part over examples, and
12 an example-independent part (usually called the regularizer).
13 The user provides a Theano formula that maps the fields of a training example
14 and parameters to output fields (for the use function), one of which must be a cost
15 that is the training criterion to be minimized. The user also provides
16 a GradientBasedOptimizer that implements the optimization strategy.
17 The inputs, parameters, outputs and lists of Theano tensors,
18 while the example_wise_cost and regularization_term are Theano tensors.
19 The user can specify a regularization coefficient that multiplies the regularization term.
20 The training algorithm looks for parameters that minimize
21 regularization_coefficienet * regularization_term(parameters) +
22 sum_{inputs in training_set} example_wise_cost(inputs,parameters)
23 i.e. the regularization_term should not depend on the inputs, only on the parameters.
24 The learned function can map a subset of inputs to a subset of outputs (as long as the inputs subset
25 includes all the inputs required in the Theano expression for the selected outputs).
26 """
27 def __init__(self, inputs, parameters, outputs, example_wise_cost, regularization_term,
28 gradient_based_optimizer=StochasticGradientDescent(), regularization_coefficient = astensor(1.0)):
29 self.inputs = inputs
30 self.outputs = outputs
31 self.parameters = parameters
32 self.example_wise_cost = example_wise_cost
33 self.regularization_term = regularization_term
34 self.gradient_based_optimizer = gradient_based_optimizer
35 self.regularization_coefficient = regularization_coefficient
36 self.parameters_example_wise_gradient = gradient.grad(example_wise_cost, parameters)
37 self.parameters_regularization_gradient = gradient.grad(self.regularization_coefficient * regularization, parameters)
38
39 # def update(self,training_set):
40