Mercurial > pylearn
comparison dataset.py @ 331:52aa031e1fe3
IMPORTANT: minibatches now returns minibatch_nowrap with a minimum of assert before. Should implement the good behavior, e.g. returning only complete batches and let the user figure out what he wants.
author | Thierry Bertin-Mahieux <bertinmt@iro.umontreal.ca> |
---|---|
date | Mon, 16 Jun 2008 16:38:03 -0400 |
parents | 20e08c52c98c |
children | dada08a6adb8 |
comparison
equal
deleted
inserted
replaced
330:20e08c52c98c | 331:52aa031e1fe3 |
---|---|
366 | 366 |
367 - minibatch_size (integer, default 1) | 367 - minibatch_size (integer, default 1) |
368 On every iteration, the variables i1, i2, i3 will have | 368 On every iteration, the variables i1, i2, i3 will have |
369 exactly minibatch_size elements. e.g. len(i1) == minibatch_size | 369 exactly minibatch_size elements. e.g. len(i1) == minibatch_size |
370 | 370 |
371 @DEPRECATED n_batches : not used anywhere | |
371 - n_batches (integer, default None) | 372 - n_batches (integer, default None) |
372 The iterator will loop exactly this many times, and then stop. If None, | 373 The iterator will loop exactly this many times, and then stop. If None, |
373 the derived class can choose a default. If (-1), then the returned | 374 the derived class can choose a default. If (-1), then the returned |
374 iterator should support looping indefinitely. | 375 iterator should support looping indefinitely. |
375 | 376 |
377 The iterator will start at example 'offset' in the dataset, rather than the default. | 378 The iterator will start at example 'offset' in the dataset, rather than the default. |
378 | 379 |
379 Note: A list-like container is something like a tuple, list, numpy.ndarray or | 380 Note: A list-like container is something like a tuple, list, numpy.ndarray or |
380 any other object that supports integer indexing and slicing. | 381 any other object that supports integer indexing and slicing. |
381 | 382 |
382 """ | 383 @ATTENTION: now minibatches returns minibatches_nowrap, which is supposed to return complete |
383 return DataSet.MinibatchWrapAroundIterator(self,fieldnames,minibatch_size,n_batches,offset) | 384 batches only, raise StopIteration |
385 | |
386 """ | |
387 #return DataSet.MinibatchWrapAroundIterator(self,fieldnames,minibatch_size,n_batches,offset)\ | |
388 assert offset >= 0 | |
389 assert offset < len(self) | |
390 assert offset + minibatch_size < len(self) | |
391 return minibatch_nowrap(fieldnames,minibatch_size,n_batches,offset) | |
384 | 392 |
385 def minibatches_nowrap(self,fieldnames,minibatch_size,n_batches,offset): | 393 def minibatches_nowrap(self,fieldnames,minibatch_size,n_batches,offset): |
386 """ | 394 """ |
387 This is the minibatches iterator generator that sub-classes must define. | 395 This is the minibatches iterator generator that sub-classes must define. |
388 It does not need to worry about wrapping around multiple times across the dataset, | 396 It does not need to worry about wrapping around multiple times across the dataset, |