Mercurial > pylearn
comparison mlp.py @ 126:4efe6d36c061
minor edits
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Wed, 07 May 2008 16:57:48 -0400 |
parents | 2ca8dccba270 |
children | 4c2280edcaf5 |
comparison
equal
deleted
inserted
replaced
121:2ca8dccba270 | 126:4efe6d36c061 |
---|---|
69 self._n_hidden = n_hidden | 69 self._n_hidden = n_hidden |
70 self._init_range = init_range | 70 self._init_range = init_range |
71 self.learning_rate = learning_rate # this is the float | 71 self.learning_rate = learning_rate # this is the float |
72 self._learning_rate = t.scalar('learning_rate') # this is the symbol | 72 self._learning_rate = t.scalar('learning_rate') # this is the symbol |
73 self._input = t.matrix('input') # n_examples x n_inputs | 73 self._input = t.matrix('input') # n_examples x n_inputs |
74 self._target = t.matrix('target','int32') # n_examples x n_outputs | 74 self._target = t.ivector('target') # n_examples x n_outputs |
75 self._L2_regularizer = t.scalar('L2_regularizer') | 75 self._L2_regularizer = t.scalar('L2_regularizer') |
76 self._W1 = t.matrix('W1') | 76 self._W1 = t.matrix('W1') |
77 self._W2 = t.matrix('W2') | 77 self._W2 = t.matrix('W2') |
78 self._b1 = t.row('b1') | 78 self._b1 = t.row('b1') |
79 self._b2 = t.row('b2') | 79 self._b2 = t.row('b2') |
80 self._regularization_term = self._L2_regularizer * (t.dot(self._W1,self._W1) + t.dot(self._W2,self._W2)) | 80 self._regularization_term = self._L2_regularizer * (t.sum(self._W1*self._W1) + t.sum(self._W2*self._W2)) |
81 self._output_activations =self._b2+t.dot(t.tanh(self._b1+t.dot(self._input,self._W1.T)),self._W2.T) | 81 self._output_activations =self._b2+t.dot(t.tanh(self._b1+t.dot(self._input,self._W1.T)),self._W2.T) |
82 self._nll,self._output = crossentropy_softmax_1hot(self._output_activations,self._target) | 82 self._nll,self._output = crossentropy_softmax_1hot(self._output_activations,self._target) |
83 self._output_class = t.argmax(self._output,1) | 83 self._output_class = t.argmax(self._output,1) |
84 self._class_error = self._output_class != self._target | 84 self._class_error = self._output_class != self._target |
85 self._minibatch_criterion = self._nll + self._regularization_term / t.shape(self._input)[0] | 85 self._minibatch_criterion = self._nll + self._regularization_term / t.shape(self._input)[0] |