Mercurial > pylearn
comparison mlp.py @ 129:4c2280edcaf5
Fixed typos in learner.py
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Wed, 07 May 2008 21:22:56 -0400 |
parents | 4efe6d36c061 |
children | f6505ec32dc3 |
comparison
equal
deleted
inserted
replaced
128:ee5507af2c60 | 129:4c2280edcaf5 |
---|---|
5 | 5 |
6 # this is one of the simplest example of learner, and illustrates | 6 # this is one of the simplest example of learner, and illustrates |
7 # the use of theano | 7 # the use of theano |
8 | 8 |
9 | 9 |
10 class OneHiddenLayerNNetClassifier(MinibatchUpdatesTLearner): | 10 class OneHiddenLayerNNetClassifier(OnlineGradientTLearner): |
11 """ | 11 """ |
12 Implement a straightforward classicial feedforward | 12 Implement a straightforward classicial feedforward |
13 one-hidden-layer neural net, with L2 regularization. | 13 one-hidden-layer neural net, with L2 regularization. |
14 | 14 |
15 The predictor parameters are obtained by minibatch/online gradient descent. | 15 The predictor parameters are obtained by minibatch/online gradient descent. |
81 self._output_activations =self._b2+t.dot(t.tanh(self._b1+t.dot(self._input,self._W1.T)),self._W2.T) | 81 self._output_activations =self._b2+t.dot(t.tanh(self._b1+t.dot(self._input,self._W1.T)),self._W2.T) |
82 self._nll,self._output = crossentropy_softmax_1hot(self._output_activations,self._target) | 82 self._nll,self._output = crossentropy_softmax_1hot(self._output_activations,self._target) |
83 self._output_class = t.argmax(self._output,1) | 83 self._output_class = t.argmax(self._output,1) |
84 self._class_error = self._output_class != self._target | 84 self._class_error = self._output_class != self._target |
85 self._minibatch_criterion = self._nll + self._regularization_term / t.shape(self._input)[0] | 85 self._minibatch_criterion = self._nll + self._regularization_term / t.shape(self._input)[0] |
86 MinibatchUpdatesTLearner.__init__(self) | 86 OnlineGradientTLearner.__init__(self) |
87 | 87 |
88 def attributeNames(self): | 88 def attributeNames(self): |
89 return ["parameters","b1","W2","b2","W2", "L2_regularizer","regularization_term"] | 89 return ["parameters","b1","W2","b2","W2", "L2_regularizer","regularization_term"] |
90 | 90 |
91 def parameterAttributes(self): | 91 def parameterAttributes(self): |