comparison make_test_datasets.py @ 431:0f8c81b0776d

Adding file make_test_datasets to host simple data-generating processes to create artificial datasets meant to test various learning algorithms.
author Yoshua Bengio <bengioy@iro.umontreal.ca>
date Tue, 29 Jul 2008 10:19:25 -0400
parents
children 8e4d2ebd816a
comparison
equal deleted inserted replaced
430:c096e2820131 431:0f8c81b0776d
1 from pylearn.dataset import ArrayDataSet
2
3 """
4 General-purpose code to generate artificial datasets that can be used
5 to test different learning algorithms.
6 """
7
8 def make_triangles_rectangles_datasets(n_examples=600,train_frac=0.5,image_size=(10,10)):
9 """
10 Make a binary classification dataset to discriminate triangle images from rectangle images.
11 """
12 def convert_dataset(dset):
13 # convert the n_vert==3 into target==0 and n_vert==4 into target==1
14 def mapf(images,n_vertices):
15 n=len(n_vertices)
16 targets = ndarray((n,1),dtype='float64')
17 for i in xrange(n):
18 targets[i,0] = array([0. if vertices[i]==3 else 1.],dtype='float64')
19 return images.reshape(len(images),images[0].size).astype('float64'),targets
20 return dataset.CachedDataSet(dataset.ApplyFunctionDataSet(dset("image","nvert"),mapf,["input","target"]),True)
21
22 p=Polygons(image_size,[3,4],fg_min=1./255,fg_max=1./255,rot_max=1.,scale_min=0.35,scale_max=0.9,pos_min=0.1, pos_max=0.9)
23 data = p.subset[0:n_examples]
24 save_polygon_data(data,"shapes")
25 n_train=int(n_examples*train_frac)
26 trainset=convert_dataset(data.subset[0:n_train])
27 testset=convert_dataset(data.subset[n_train:n_examples])
28 return trainset,testset
29
30 def make_artificial_datasets_from_function(n_inputs=1,
31 n_targets=1,
32 n_examples=20,
33 train_frac=0.5,
34 noise_level=0.1, # add Gaussian noise, noise_level=sigma
35 params_shape=None,
36 f=None, # function computing E[Y|X]
37 otherargs=None, # extra args to f
38 b=None): # force theta[0] with this value
39 """
40 Make regression data of the form
41 Y | X ~ Normal(f(X,theta,otherargs),noise_level^2)
42 If n_inputs==1 then X is chosen at regular locations on the [-1,1] interval.
43 Otherwise X is sampled according to a Normal(0,1) on all dimensions (independently).
44 The parameters theta is a matrix of shape params_shape that is sampled from Normal(0,1).
45 Optionally theta[0] is set to the argument 'b', if b is provided.
46
47 Return a training set and a test set, by splitting the generated n_examples
48 according to the 'train_frac'tion.
49 """
50 n_train=int(train_frac*n_examples)
51 n_test=n_examples-n_train
52 if n_inputs==1:
53 delta1=2./n_train
54 delta2=2./n_test
55 inputs = vstack((array(zip(range(n_train)))*delta1-1,
56 0.5*delta2+array(zip(range(n_test)))*delta2-1))
57 else:
58 inputs = random.normal(size=(n_examples,n_inputs))
59 if not f:
60 f = linear_predictor
61 if f==kernel_predictor and not otherargs[1]:
62 otherargs=(otherargs[0],inputs[0:n_train])
63 if not params_shape:
64 if f==linear_predictor:
65 params_shape = (n_inputs+1,n_targets)
66 elif f==kernel_predictor:
67 params_shape = (otherargs[1].shape[0]+1,n_targets)
68 theta = random.normal(size=params_shape) if params_shape else None
69 if b:
70 theta[0]=b
71 outputs = f(inputs,theta,otherargs)
72 targets = outputs + random.normal(scale=noise_level,size=(n_examples,n_targets))
73 # the | stacking creates a strange bug in LookupList constructor:
74 # trainset = ArrayDataSet(inputs[0:n_examples/2],{'input':slice(0,n_inputs)}) | \
75 # ArrayDataSet(targets[0:n_examples/2],{'target':slice(0,n_targets)})
76 # testset = ArrayDataSet(inputs[n_examples/2:],{'input':slice(0,n_inputs)}) | \
77 # ArrayDataSet(targets[n_examples/2:],{'target':slice(0,n_targets)})
78 data = hstack((inputs,targets))
79 trainset = ArrayDataSet(data[0:n_train],
80 {'input':slice(0,n_inputs),'target':slice(n_inputs,n_inputs+n_targets)})
81 testset = ArrayDataSet(data[n_train:],
82 {'input':slice(0,n_inputs),'target':slice(n_inputs,n_inputs+n_targets)})
83 return trainset,testset,theta