Mercurial > pylearn
annotate cost.py @ 460:fda72e944104
\/ -> /
author | Joseph Turian <turian@iro.umontreal.ca> |
---|---|
date | Tue, 07 Oct 2008 23:07:23 -0400 |
parents | d99fefbc9324 |
children | 3daabc7f94ff |
rev | line source |
---|---|
413 | 1 """ |
2 Cost functions. | |
439 | 3 |
4 @note: All of these functions return one cost per example. So it is your | |
5 job to perform a tensor.sum over the individual example losses. | |
413 | 6 """ |
7 | |
415 | 8 import theano.tensor as T |
451 | 9 from xlogx import xlogx |
415 | 10 |
413 | 11 def quadratic(target, output, axis=1): |
12 return T.mean(T.sqr(target - output), axis) | |
13 | |
14 def cross_entropy(target, output, axis=1): | |
448 | 15 """ |
16 @todo: This is essentially duplicated as nnet_ops.binary_crossentropy | |
449 | 17 @warning: OUTPUT and TARGET are reversed in nnet_ops.binary_crossentropy |
448 | 18 """ |
434
0f366ecb11ee
log2->log in cost
Olivier Breuleux <breuleuo@iro.umontreal.ca>
parents:
415
diff
changeset
|
19 return -T.mean(target * T.log(output) + (1 - target) * T.log(1 - output), axis=axis) |
451 | 20 |
21 def KL_divergence(target, output): | |
22 """ | |
23 @note: We do not compute the mean, because if target and output have | |
24 different shapes then the result will be garbled. | |
25 """ | |
26 return -(target * T.log(output) + (1 - target) * T.log(1 - output)) \ | |
27 + (xlogx(target) + xlogx(1 - target)) | |
28 # return cross_entropy(target, output, axis) - cross_entropy(target, target, axis) |