Mercurial > pylearn
annotate linear_regression.py @ 488:e06666ac32d5
Added another todo
author | Joseph Turian <turian@gmail.com> |
---|---|
date | Tue, 28 Oct 2008 02:39:00 -0400 |
parents | 8e4d2ebd816a |
children | 111e547ffa7b |
rev | line source |
---|---|
132
f6505ec32dc3
Updated documentation slightly
Joseph Turian <turian@gmail.com>
parents:
118
diff
changeset
|
1 """ |
f6505ec32dc3
Updated documentation slightly
Joseph Turian <turian@gmail.com>
parents:
118
diff
changeset
|
2 Implementation of linear regression, with or without L2 regularization. |
f6505ec32dc3
Updated documentation slightly
Joseph Turian <turian@gmail.com>
parents:
118
diff
changeset
|
3 This is one of the simplest example of L{learner}, and illustrates |
f6505ec32dc3
Updated documentation slightly
Joseph Turian <turian@gmail.com>
parents:
118
diff
changeset
|
4 the use of theano. |
f6505ec32dc3
Updated documentation slightly
Joseph Turian <turian@gmail.com>
parents:
118
diff
changeset
|
5 """ |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
6 |
432
8e4d2ebd816a
added a test for LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
431
diff
changeset
|
7 from pylearn.learner import OfflineLearningAlgorithm,OnlineLearningAlgorithm |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
8 from theano import tensor as T |
419
43d9aa93934e
added other_ops.py to nnet_ops; added basic tests, no docs.
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
408
diff
changeset
|
9 from nnet_ops import prepend_1_to_each_row |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
10 from theano.scalar import as_scalar |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
11 from common.autoname import AutoName |
390
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
12 import theano |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
13 import numpy |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
14 |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
15 class LinearRegression(OfflineLearningAlgorithm): |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
16 """ |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
17 Implement linear regression, with or without L2 regularization |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
18 (the former is called Ridge Regression and the latter Ordinary Least Squares). |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
19 |
390
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
20 Usage: |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
21 |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
22 linear_regressor=LinearRegression(L2_regularizer=0.1) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
23 linear_predictor=linear_regression(training_set) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
24 all_results_dataset=linear_predictor(test_set) # creates a dataset with "output" and "squared_error" field |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
25 outputs = linear_predictor.compute_outputs(inputs) # inputs and outputs are numpy arrays |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
26 outputs, errors = linear_predictor.compute_outputs_and_errors(inputs,targets) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
27 errors = linear_predictor.compute_errors(inputs,targets) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
28 mse = linear_predictor.compute_mse(inputs,targets) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
29 |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
30 |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
31 |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
32 The training_set must have fields "input" and "target". |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
33 The test_set must have field "input", and needs "target" if |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
34 we want to compute the squared errors. |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
35 |
92
c4726e19b8ec
Finished first draft of TLearner
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
78
diff
changeset
|
36 The predictor parameters are obtained analytically from the training set. |
421
e01f17be270a
Kernel regression learning algorithm
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
419
diff
changeset
|
37 |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
38 For each (input[t],output[t]) pair in a minibatch,:: |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
39 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
40 output_t = b + W * input_t |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
41 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
42 where b and W are obtained by minimizing:: |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
43 |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
44 L2_regularizer sum_{ij} W_{ij}^2 + sum_t ||output_t - target_t||^2 |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
45 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
46 Let X be the whole training set inputs matrix (one input example per row), |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
47 with the first column full of 1's, and Let Y the whole training set |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
48 targets matrix (one example's target vector per row). |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
49 Let theta = the matrix with b in its first column and W in the others, |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
50 then each theta[:,i] is the solution of the linear system:: |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
51 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
52 XtX * theta[:,i] = XtY[:,i] |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
53 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
54 where XtX is a (n_inputs+1)x(n_inputs+1) matrix containing X'*X |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
55 plus L2_regularizer on the diagonal except at (0,0), |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
56 and XtY is a (n_inputs+1)*n_outputs matrix containing X'*Y. |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
57 |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
58 The dataset fields expected and produced by the learning algorithm and the trained model |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
59 are the following: |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
60 |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
61 - Input and output dataset fields (example-wise quantities): |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
62 |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
63 - 'input' (always expected as an input_dataset field) |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
64 - 'target' (always expected by the learning algorithm, optional for learned model) |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
65 - 'output' (always produced by learned model) |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
66 - 'squared_error' (optionally produced by learned model if 'target' is provided) |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
67 = example-wise squared error |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
68 """ |
390
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
69 def __init__(self, L2_regularizer=0,minibatch_size=10000): |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
70 self.L2_regularizer=L2_regularizer |
390
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
71 self.equations = LinearRegressionEquations() |
421
e01f17be270a
Kernel regression learning algorithm
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
419
diff
changeset
|
72 self.minibatch_size=minibatch_size |
390
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
73 |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
74 def __call__(self,trainset): |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
75 first_example = trainset[0] |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
76 n_inputs = first_example['input'].size |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
77 n_outputs = first_example['target'].size |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
78 XtX = numpy.zeros((n_inputs+1,n_inputs+1)) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
79 XtY = numpy.zeros((n_inputs+1,n_outputs)) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
80 for i in xrange(n_inputs): |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
81 XtX[i+1,i+1]=self.L2_regularizer |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
82 mbs=min(self.minibatch_size,len(trainset)) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
83 for inputs,targets in trainset.minibatches(["input","target"],minibatch_size=mbs): |
403
273e5c03003e
Making linear_regression more robust
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
390
diff
changeset
|
84 XtX,XtY=self.equations.update(XtX,XtY,numpy.array(inputs),numpy.array(targets)) |
390
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
85 theta=numpy.linalg.solve(XtX,XtY) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
86 return LinearPredictor(theta) |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
87 |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
88 class LinearPredictorEquations(AutoName): |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
89 inputs = T.matrix() # minibatchsize x n_inputs |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
90 targets = T.matrix() # minibatchsize x n_outputs |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
91 theta = T.matrix() # (n_inputs+1) x n_outputs |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
92 b = theta[0] |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
93 Wt = theta[1:,:] |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
94 outputs = T.dot(inputs,Wt) + b # minibatchsize x n_outputs |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
95 squared_errors = T.sum(T.sqr(targets-outputs),axis=1) |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
96 |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
97 __compiled = False |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
98 @classmethod |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
99 def compile(cls,linker='c|py'): |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
100 if cls.__compiled: |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
101 return |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
102 def fn(input_vars,output_vars): |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
103 return staticmethod(theano.function(input_vars,output_vars, linker=linker)) |
110
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
104 |
390
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
105 cls.compute_outputs = fn([cls.inputs,cls.theta],[cls.outputs]) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
106 cls.compute_errors = fn([cls.outputs,cls.targets],[cls.squared_errors]) |
110
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
107 |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
108 cls.__compiled = True |
77
1e2bb5bad636
toying with different ways to implement learners
bengioy@bengiomac.local
parents:
75
diff
changeset
|
109 |
390
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
110 def __init__(self): |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
111 self.compile() |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
112 |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
113 class LinearRegressionEquations(LinearPredictorEquations): |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
114 P = LinearPredictorEquations |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
115 XtX = T.matrix() # (n_inputs+1) x (n_inputs+1) |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
116 XtY = T.matrix() # (n_inputs+1) x n_outputs |
390
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
117 extended_input = prepend_1_to_each_row(P.inputs) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
118 new_XtX = T.add_inplace(XtX,T.dot(extended_input.T,extended_input)) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
119 new_XtY = T.add_inplace(XtY,T.dot(extended_input.T,P.targets)) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
120 |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
121 __compiled = False |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
122 |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
123 @classmethod |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
124 def compile(cls,linker='c|py'): |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
125 if cls.__compiled: |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
126 return |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
127 def fn(input_vars,output_vars): |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
128 return staticmethod(theano.function(input_vars,output_vars, linker=linker)) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
129 |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
130 cls.update = fn([cls.XtX,cls.XtY,cls.P.inputs,cls.P.targets],[cls.new_XtX,cls.new_XtY]) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
131 |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
132 cls.__compiled = True |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
133 |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
134 def __init__(self): |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
135 self.compile() |
379
74b402b5a81b
small modif by yoshue
Frederic Bastien <bastienf@iro.umontreal.ca>
parents:
376
diff
changeset
|
136 |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
137 class LinearPredictor(object): |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
138 """ |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
139 A linear predictor has parameters theta (a bias vector and a weight matrix) |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
140 it can use to make a linear prediction (according to the LinearPredictorEquations). |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
141 It can compute its output (bias + weight * input) and a squared error (||output - target||^2). |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
142 """ |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
143 def __init__(self, theta): |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
144 self.theta=theta |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
145 self.n_inputs=theta.shape[0]-1 |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
146 self.n_outputs=theta.shape[1] |
390
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
147 self.equations = LinearPredictorEquations() |
77
1e2bb5bad636
toying with different ways to implement learners
bengioy@bengiomac.local
parents:
75
diff
changeset
|
148 |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
149 def compute_outputs(self,inputs): |
390
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
150 return self.equations.compute_outputs(inputs,self.theta) |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
151 def compute_errors(self,inputs,targets): |
390
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
152 return self.equations.compute_errors(self.compute_outputs(inputs),targets) |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
153 def compute_outputs_and_errors(self,inputs,targets): |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
154 outputs = self.compute_outputs(inputs) |
390
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
155 return [outputs,self.equations.compute_errors(outputs,targets)] |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
156 def compute_mse(self,inputs,targets): |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
157 errors = self.compute_errors(inputs,targets) |
efb797c5efc0
First non-crashing draft of LinearRegression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
379
diff
changeset
|
158 return numpy.sum(errors)/errors.size |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
159 |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
160 def __call__(self,dataset,output_fieldnames=None,cached_output_dataset=False): |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
161 assert dataset.hasFields(["input"]) |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
162 if output_fieldnames is None: |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
163 if dataset.hasFields(["target"]): |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
164 output_fieldnames = ["output","squared_error"] |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
165 else: |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
166 output_fieldnames = ["output"] |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
167 output_fieldnames.sort() |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
168 if output_fieldnames == ["squared_error"]: |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
169 f = self.compute_errors |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
170 elif output_fieldnames == ["output"]: |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
171 f = self.compute_outputs |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
172 elif output_fieldnames == ["output","squared_error"]: |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
173 f = self.compute_outputs_and_errors |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
174 else: |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
175 raise ValueError("unknown field(s) in output_fieldnames: "+str(output_fieldnames)) |
77
1e2bb5bad636
toying with different ways to implement learners
bengioy@bengiomac.local
parents:
75
diff
changeset
|
176 |
376
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
177 ds=ApplyFunctionDataSet(dataset,f,output_fieldnames) |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
178 if cached_output_dataset: |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
179 return CachedDataSet(ds) |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
180 else: |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
181 return ds |
c9a89be5cb0a
Redesigning linear_regression
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
132
diff
changeset
|
182 |
77
1e2bb5bad636
toying with different ways to implement learners
bengioy@bengiomac.local
parents:
75
diff
changeset
|
183 |
431
0f8c81b0776d
Adding file make_test_datasets to host simple data-generating processes
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
427
diff
changeset
|
184 def linear_predictor(inputs,params,*otherargs): |
0f8c81b0776d
Adding file make_test_datasets to host simple data-generating processes
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
427
diff
changeset
|
185 p = LinearPredictor(params) |
0f8c81b0776d
Adding file make_test_datasets to host simple data-generating processes
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
427
diff
changeset
|
186 return p.compute_outputs(inputs) |
0f8c81b0776d
Adding file make_test_datasets to host simple data-generating processes
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
427
diff
changeset
|
187 |
427
fa4a5fee53ce
Showing the path to an online version of linear regressor.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
421
diff
changeset
|
188 #TODO : an online version |
fa4a5fee53ce
Showing the path to an online version of linear regressor.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
421
diff
changeset
|
189 class OnlineLinearRegression(OnlineLearningAlgorithm): |
fa4a5fee53ce
Showing the path to an online version of linear regressor.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
421
diff
changeset
|
190 """ |
fa4a5fee53ce
Showing the path to an online version of linear regressor.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
421
diff
changeset
|
191 Training can proceed sequentially (with multiple calls to update with |
fa4a5fee53ce
Showing the path to an online version of linear regressor.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
421
diff
changeset
|
192 different disjoint subsets of the training sets). After each call to |
fa4a5fee53ce
Showing the path to an online version of linear regressor.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
421
diff
changeset
|
193 update the predictor is ready to be used (and optimized for the union |
fa4a5fee53ce
Showing the path to an online version of linear regressor.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
421
diff
changeset
|
194 of all the training sets passed to update since construction or since |
fa4a5fee53ce
Showing the path to an online version of linear regressor.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
421
diff
changeset
|
195 the last call to forget). |
fa4a5fee53ce
Showing the path to an online version of linear regressor.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
421
diff
changeset
|
196 """ |
fa4a5fee53ce
Showing the path to an online version of linear regressor.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
421
diff
changeset
|
197 pass |
fa4a5fee53ce
Showing the path to an online version of linear regressor.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
421
diff
changeset
|
198 |
fa4a5fee53ce
Showing the path to an online version of linear regressor.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
421
diff
changeset
|
199 |
fa4a5fee53ce
Showing the path to an online version of linear regressor.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
421
diff
changeset
|
200 |
fa4a5fee53ce
Showing the path to an online version of linear regressor.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
421
diff
changeset
|
201 |