Mercurial > pylearn
annotate linear_regression.py @ 126:4efe6d36c061
minor edits
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Wed, 07 May 2008 16:57:48 -0400 |
parents | d0a1bd0378c6 |
children | f6505ec32dc3 |
rev | line source |
---|---|
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
1 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
2 from learner import * |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
3 from theano import tensor as t |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
4 from theano.scalar import as_scalar |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
5 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
6 # this is one of the simplest example of learner, and illustrates |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
7 # the use of theano |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
8 class LinearRegression(MinibatchUpdatesTLearner): |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
9 """ |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
10 Implement linear regression, with or without L2 regularization |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
11 (the former is called Ridge Regression and the latter Ordinary Least Squares). |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
12 |
92
c4726e19b8ec
Finished first draft of TLearner
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
78
diff
changeset
|
13 The predictor parameters are obtained analytically from the training set. |
c4726e19b8ec
Finished first draft of TLearner
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
78
diff
changeset
|
14 Training can proceed sequentially (with multiple calls to update with |
c4726e19b8ec
Finished first draft of TLearner
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
78
diff
changeset
|
15 different disjoint subsets of the training sets). After each call to |
c4726e19b8ec
Finished first draft of TLearner
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
78
diff
changeset
|
16 update the predictor is ready to be used (and optimized for the union |
c4726e19b8ec
Finished first draft of TLearner
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
78
diff
changeset
|
17 of all the training sets passed to update since construction or since |
c4726e19b8ec
Finished first draft of TLearner
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
78
diff
changeset
|
18 the last call to forget). |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
19 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
20 For each (input[t],output[t]) pair in a minibatch,:: |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
21 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
22 output_t = b + W * input_t |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
23 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
24 where b and W are obtained by minimizing:: |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
25 |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
26 L2_regularizer sum_{ij} W_{ij}^2 + sum_t ||output_t - target_t||^2 |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
27 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
28 Let X be the whole training set inputs matrix (one input example per row), |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
29 with the first column full of 1's, and Let Y the whole training set |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
30 targets matrix (one example's target vector per row). |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
31 Let theta = the matrix with b in its first column and W in the others, |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
32 then each theta[:,i] is the solution of the linear system:: |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
33 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
34 XtX * theta[:,i] = XtY[:,i] |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
35 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
36 where XtX is a (n_inputs+1)x(n_inputs+1) matrix containing X'*X |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
37 plus L2_regularizer on the diagonal except at (0,0), |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
38 and XtY is a (n_inputs+1)*n_outputs matrix containing X'*Y. |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
39 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
40 The fields and attributes expected and produced by use and update are the following: |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
41 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
42 - Input and output fields (example-wise quantities): |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
43 |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
44 - 'input' (always expected by use and update as an input_dataset field) |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
45 - 'target' (optionally expected by use and update as an input_dataset field) |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
46 - 'output' (optionally produced by use as an output dataset field) |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
47 - 'squared_error' (optionally produced by use as an output dataset field, needs 'target') = example-wise squared error |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
48 |
92
c4726e19b8ec
Finished first draft of TLearner
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
78
diff
changeset
|
49 - optional attributes (optionally expected as input_dataset attributes) |
c4726e19b8ec
Finished first draft of TLearner
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
78
diff
changeset
|
50 (warning, this may be dangerous, the 'use' method will use those provided in the |
c4726e19b8ec
Finished first draft of TLearner
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
78
diff
changeset
|
51 input_dataset rather than those learned during 'update'; currently no support |
c4726e19b8ec
Finished first draft of TLearner
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
78
diff
changeset
|
52 for providing these to update): |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
53 |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
54 - 'L2_regularizer' |
92
c4726e19b8ec
Finished first draft of TLearner
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
78
diff
changeset
|
55 - 'b' |
110
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
56 - 'W' |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
57 - 'parameters' = [b, W] |
110
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
58 - 'regularization_term' |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
59 - 'XtX' |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
60 - 'XtY' |
107
c4916445e025
Comments from Pascal V.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
92
diff
changeset
|
61 |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
62 """ |
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
63 |
92
c4726e19b8ec
Finished first draft of TLearner
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
78
diff
changeset
|
64 def attributeNames(self): |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
65 return ["L2_regularizer","parameters","b","W","regularization_term","XtX","XtY"] |
110
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
66 |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
67 def useInputAttributes(self): |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
68 return ["b","W"] |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
69 |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
70 def useOutputAttributes(self): |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
71 return [] |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
72 |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
73 def updateInputAttributes(self): |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
74 return ["L2_regularizer","XtX","XtY"] |
77
1e2bb5bad636
toying with different ways to implement learners
bengioy@bengiomac.local
parents:
75
diff
changeset
|
75 |
110
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
76 def updateMinibatchInputFields(self): |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
77 return ["input","target"] |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
78 |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
79 def updateMinibatchInputAttributes(self): |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
80 return ["XtX","XtY"] |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
81 |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
82 def updateMinibatchOutputAttributes(self): |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
83 return ["new_XtX","new_XtY"] |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
84 |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
85 def updateEndInputAttributes(self): |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
86 return ["theta","XtX","XtY"] |
77
1e2bb5bad636
toying with different ways to implement learners
bengioy@bengiomac.local
parents:
75
diff
changeset
|
87 |
110
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
88 def updateEndOutputAttributes(self): |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
89 return ["new_theta","b","W","regularization_term"] # CHECK: WILL b AND W CONTAIN OLD OR NEW THETA? @todo i.e. order of computation = ? |
77
1e2bb5bad636
toying with different ways to implement learners
bengioy@bengiomac.local
parents:
75
diff
changeset
|
90 |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
91 def parameterAttributes(self): |
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
92 return ["b","W"] |
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
93 |
78 | 94 def defaultOutputFields(self, input_fields): |
77
1e2bb5bad636
toying with different ways to implement learners
bengioy@bengiomac.local
parents:
75
diff
changeset
|
95 output_fields = ["output"] |
1e2bb5bad636
toying with different ways to implement learners
bengioy@bengiomac.local
parents:
75
diff
changeset
|
96 if "target" in input_fields: |
1e2bb5bad636
toying with different ways to implement learners
bengioy@bengiomac.local
parents:
75
diff
changeset
|
97 output_fields.append("squared_error") |
1e2bb5bad636
toying with different ways to implement learners
bengioy@bengiomac.local
parents:
75
diff
changeset
|
98 return output_fields |
1e2bb5bad636
toying with different ways to implement learners
bengioy@bengiomac.local
parents:
75
diff
changeset
|
99 |
110
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
100 def __init__(self): |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
101 self._input = t.matrix('input') # n_examples x n_inputs |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
102 self._target = t.matrix('target') # n_examples x n_outputs |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
103 self._L2_regularizer = as_scalar(0.,'L2_regularizer') |
110
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
104 self._theta = t.matrix('theta') |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
105 self._W = self._theta[:,1:] |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
106 self._b = self._theta[:,0] |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
107 self._XtX = t.matrix('XtX') |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
108 self._XtY = t.matrix('XtY') |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
109 self._extended_input = t.prepend_one_to_each_row(self._input) |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
110 self._output = t.dot(self._input,self._W.T) + self._b # (n_examples , n_outputs) matrix |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
111 self._squared_error = t.sum_within_rows(t.sqr(self._output-self._target)) # (n_examples ) vector |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
112 self._regularizer = self._L2_regularizer * t.dot(self._W,self._W) |
110
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
113 self._new_XtX = add_inplace(self._XtX,t.dot(self._extended_input.T,self._extended_input)) |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
114 self._new_XtY = add_inplace(self._XtY,t.dot(self._extended_input.T,self._target)) |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
115 self._new_theta = t.solve_inplace(self._theta,self._XtX,self._XtY) |
77
1e2bb5bad636
toying with different ways to implement learners
bengioy@bengiomac.local
parents:
75
diff
changeset
|
116 |
118
d0a1bd0378c6
Finished draft of OneHiddenLayerNNetClassifier to debut learner.py
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
111
diff
changeset
|
117 MinibatchUpdatesTLearner.__init__(self) |
110
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
118 |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
119 def allocate(self,minibatch): |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
120 minibatch_n_inputs = minibatch["input"].shape[1] |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
121 minibatch_n_outputs = minibatch["target"].shape[1] |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
122 if not self._n_inputs: |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
123 self._n_inputs = minibatch_n_inputs |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
124 self._n_outputs = minibatch_n_outputs |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
125 self.XtX = numpy.zeros((1+self._n_inputs,1+self._n_inputs)) |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
126 self.XtY = numpy.zeros((1+self._n_inputs,self._n_outputs)) |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
127 self.theta = numpy.zeros((self._n_outputs,1+self._n_inputs)) |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
128 self.forget() |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
129 elif self._n_inputs!=minibatch_n_inputs or self._n_outputs!=minibatch_n_outputs: |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
130 # if the input or target changes dimension on the fly, we resize and forget everything |
110
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
131 self.forget() |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
132 |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
133 def forget(self): |
110
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
134 if self._n_inputs and self._n_outputs: |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
135 self.XtX.resize((1+self.n_inputs,1+self.n_inputs)) |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
136 self.XtY.resize((1+self.n_inputs,self.n_outputs)) |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
137 self.XtX.data[:,:]=0 |
8fa1ef2411a0
Worked on OneShotTLearner and implementation of LinearRegression
bengioy@bengiomac.local
parents:
107
diff
changeset
|
138 self.XtY.data[:,:]=0 |
111
88257dfedf8c
Added another work in progress, for mlp's
bengioy@bengiomac.local
parents:
110
diff
changeset
|
139 numpy.diag(self.XtX.data)[1:]=self.L2_regularizer |
75
90e4c0784d6e
Added draft of LinearRegression learner
bengioy@bengiomac.local
parents:
diff
changeset
|
140 |