Mercurial > parpg-source
view characterstatistics.py @ 1:4912a6f97c52
Various improvements to the build process including support for self-contained builds.
* Note that despite all of these changes PARPG still does not run because asset paths are not standardized,
* Modified the SCons script so that by default running `scons` with no arguments creates a self-contained "build" under a build subdirectory to make in-source testing easier. To install PARPG, use `scons install` instead.
* Got rid of the binary launcher and replaced it with a shell script for unix and a batch script for Windows (batch script is untested). The binary turned out to be too much trouble to maintain.
* Modified the parpg.settings module and parpg.main entry script so that PARPG searches through several default search paths for configuration file(s). PARPG thus no longer crashes if it can't find a configuration file in any particular search path, but will crash it if can't find any configuration files.
* Paths supplied to parpg.main are now appended as search paths for the configuration file(s).
* Changed the default configuration file name to "parpg.cfg" to simplify searches.
* Created the site_scons directory tree where SCons extensions and tools should be placed.
* Created a new SCons builder, CopyRecurse, which can copy only certain files and folders from a directory tree using filters (files and folders that start with a leading dot "." e.g. ".svn" are ignored by default).
* Added the CPython SCons tool (stands for Compile-Python - I didn't name it!), which provides the InstallPython builder for pre-compiling python sources before they are installed. However, it is currently broken and only installs the python sources.
author | M. George Hansen <technopolitica@gmail.com> |
---|---|
date | Tue, 31 May 2011 02:46:20 -0700 |
parents | 7a89ea5404b1 |
children | 741d7d193bad |
line wrap: on
line source
# This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ Provides classes that define character stats and traits. """ from abc import ABCMeta, abstractmethod from weakref import ref as weakref from .serializers import SerializableRegistry class AbstractCharacterStatistic(object): __metaclass__ = ABCMeta @abstractmethod def __init__(self, description, minimum, maximum): self.description = description self.minimum = minimum self.maximum = maximum class PrimaryCharacterStatistic(AbstractCharacterStatistic): def __init__(self, long_name, short_name, description, minimum=0, maximum=100): AbstractCharacterStatistic.__init__(self, description=description, minimum=minimum, maximum=maximum) self.long_name = long_name self.short_name = short_name SerializableRegistry.registerClass( 'PrimaryCharacterStatistic', PrimaryCharacterStatistic, init_args=[ ('long_name', unicode), ('short_name', unicode), ('description', unicode), ('minimum', int), ('maximum', int), ], ) class SecondaryCharacterStatistic(AbstractCharacterStatistic): def __init__(self, name, description, unit, mean, sd, stat_modifiers, minimum=None, maximum=None): AbstractCharacterStatistic.__init__(self, description=description, minimum=minimum, maximum=maximum) self.name = name self.unit = unit self.mean = mean self.sd = sd self.stat_modifiers = stat_modifiers SerializableRegistry.registerClass( 'SecondaryCharacterStatistic', SecondaryCharacterStatistic, init_args=[ ('name', unicode), ('description', unicode), ('unit', unicode), ('mean', float), ('sd', float), ('stat_modifiers', dict), ('minimum', float), ('maximum', float), ], ) class AbstractStatisticValue(object): __metaclass__ = ABCMeta @abstractmethod def __init__(self, statistic_type, character): self.statistic_type = statistic_type self.character = weakref(character) class PrimaryStatisticValue(AbstractStatisticValue): def value(): def fget(self): return self._value def fset(self, new_value): assert 0 <= new_value <= 100 self._value = new_value def __init__(self, statistic_type, character, value): AbstractStatisticValue.__init__(self, statistic_type=statistic_type, character=character) self._value = None self.value = value class SecondaryStatisticValue(AbstractStatisticValue): def normalized_value(): def fget(self): return self._normalized_value def fset(self, new_value): self._normalized_value = new_value statistic_type = self.statistic_type mean = statistic_type.mean sd = statistic_type.sd self._value = self.calculate_value(mean, sd, new_value) return locals() normalized_value = property(**normalized_value()) def value(): def fget(self): return self._value def fset(self, new_value): self._value = new_value statistic_type = self.statistic_type mean = statistic_type.mean sd = statistic_type.sd self._normalized_value = self.calculate_value(mean, sd, new_value) return locals() value = property(**value()) def __init__(self, statistic_type, character): AbstractStatisticValue.__init__(self, statistic_type=statistic_type, character=character) mean = statistic_type.mean sd = statistic_type.sd normalized_value = self.derive_value(normalized=True) self._normalized_value = normalized_value self._value = self.calculate_value(mean, sd, normalized_value) def derive_value(self, normalized=True): """ Derive the current value """ statistic_type = self.statistic_type stat_modifiers = statistic_type.stat_modifiers character = self.character() value = sum( character.statistics[name].value * modifier for name, modifier in stat_modifiers.items() ) assert 0 <= value <= 100 if not normalized: mean = statistic_type.mean sd = statistic_type.sd value = self.calculate_value(mean, sd, value) return value @staticmethod def calculate_value(mean, sd, normalized_value): value = sd * (normalized_value - 50) + mean return value @staticmethod def calculate_normalized_value(mean, sd, value): normalized_value = ((value - mean) / sd) + 50 return normalized_value