Mercurial > parpg-source
diff characterstatistics.py @ 0:7a89ea5404b1
Initial commit of parpg-core.
author | M. George Hansen <technopolitica@gmail.com> |
---|---|
date | Sat, 14 May 2011 01:12:35 -0700 |
parents | |
children | 741d7d193bad |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/characterstatistics.py Sat May 14 01:12:35 2011 -0700 @@ -0,0 +1,165 @@ +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. + +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. + +# You should have received a copy of the GNU General Public License +# along with this program. If not, see <http://www.gnu.org/licenses/>. +""" +Provides classes that define character stats and traits. +""" + +from abc import ABCMeta, abstractmethod +from weakref import ref as weakref + +from .serializers import SerializableRegistry + +class AbstractCharacterStatistic(object): + __metaclass__ = ABCMeta + + @abstractmethod + def __init__(self, description, minimum, maximum): + self.description = description + self.minimum = minimum + self.maximum = maximum + + +class PrimaryCharacterStatistic(AbstractCharacterStatistic): + def __init__(self, long_name, short_name, description, minimum=0, + maximum=100): + AbstractCharacterStatistic.__init__(self, description=description, + minimum=minimum, maximum=maximum) + self.long_name = long_name + self.short_name = short_name + +SerializableRegistry.registerClass( + 'PrimaryCharacterStatistic', + PrimaryCharacterStatistic, + init_args=[ + ('long_name', unicode), + ('short_name', unicode), + ('description', unicode), + ('minimum', int), + ('maximum', int), + ], +) + + +class SecondaryCharacterStatistic(AbstractCharacterStatistic): + def __init__(self, name, description, unit, mean, sd, stat_modifiers, + minimum=None, maximum=None): + AbstractCharacterStatistic.__init__(self, description=description, + minimum=minimum, maximum=maximum) + self.name = name + self.unit = unit + self.mean = mean + self.sd = sd + self.stat_modifiers = stat_modifiers + +SerializableRegistry.registerClass( + 'SecondaryCharacterStatistic', + SecondaryCharacterStatistic, + init_args=[ + ('name', unicode), + ('description', unicode), + ('unit', unicode), + ('mean', float), + ('sd', float), + ('stat_modifiers', dict), + ('minimum', float), + ('maximum', float), + ], +) + + +class AbstractStatisticValue(object): + __metaclass__ = ABCMeta + + @abstractmethod + def __init__(self, statistic_type, character): + self.statistic_type = statistic_type + self.character = weakref(character) + + +class PrimaryStatisticValue(AbstractStatisticValue): + def value(): + def fget(self): + return self._value + def fset(self, new_value): + assert 0 <= new_value <= 100 + self._value = new_value + + def __init__(self, statistic_type, character, value): + AbstractStatisticValue.__init__(self, statistic_type=statistic_type, + character=character) + self._value = None + self.value = value + + +class SecondaryStatisticValue(AbstractStatisticValue): + def normalized_value(): + def fget(self): + return self._normalized_value + def fset(self, new_value): + self._normalized_value = new_value + statistic_type = self.statistic_type + mean = statistic_type.mean + sd = statistic_type.sd + self._value = self.calculate_value(mean, sd, new_value) + return locals() + normalized_value = property(**normalized_value()) + + def value(): + def fget(self): + return self._value + def fset(self, new_value): + self._value = new_value + statistic_type = self.statistic_type + mean = statistic_type.mean + sd = statistic_type.sd + self._normalized_value = self.calculate_value(mean, sd, new_value) + return locals() + value = property(**value()) + + def __init__(self, statistic_type, character): + AbstractStatisticValue.__init__(self, statistic_type=statistic_type, + character=character) + mean = statistic_type.mean + sd = statistic_type.sd + normalized_value = self.derive_value(normalized=True) + self._normalized_value = normalized_value + self._value = self.calculate_value(mean, sd, normalized_value) + + def derive_value(self, normalized=True): + """ + Derive the current value + """ + statistic_type = self.statistic_type + stat_modifiers = statistic_type.stat_modifiers + character = self.character() + + value = sum( + character.statistics[name].value * modifier for name, modifier in + stat_modifiers.items() + ) + assert 0 <= value <= 100 + if not normalized: + mean = statistic_type.mean + sd = statistic_type.sd + value = self.calculate_value(mean, sd, value) + return value + + @staticmethod + def calculate_value(mean, sd, normalized_value): + value = sd * (normalized_value - 50) + mean + return value + + @staticmethod + def calculate_normalized_value(mean, sd, value): + normalized_value = ((value - mean) / sd) + 50 + return normalized_value