Mercurial > parpg-core
view src/parpg/characterstatistics.py @ 149:eab3e1e52497
Modified EquipmentSlot to display an image instead of a text.
Added EquipmentGui class, which handles the equipment slots of the player screen.
An EquipmentGui instance will be created in the InventoryGUI constructor.
The initializeInventory method of the Hud class supplies the players inventory and equipment to the InventoryGUI constructor.
author | KarstenBock@gmx.net |
---|---|
date | Wed, 05 Oct 2011 11:04:39 +0200 |
parents | 1fd2201f5c36 |
children | 756ce052ac85 |
line wrap: on
line source
# This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ Provides classes that define character stats and traits. """ from abc import ABCMeta, abstractmethod from weakref import ref as weakref from .serializers import SerializableRegistry class AbstractCharacterStatistic(object): __metaclass__ = ABCMeta @abstractmethod def __init__(self, description, minimum, maximum): self.description = description self.minimum = minimum self.maximum = maximum class PrimaryCharacterStatistic(AbstractCharacterStatistic): def __init__(self, long_name, short_name, description, minimum=0, maximum=100): AbstractCharacterStatistic.__init__(self, description=description, minimum=minimum, maximum=maximum) self.long_name = long_name self.short_name = short_name SerializableRegistry.registerClass( 'PrimaryCharacterStatistic', PrimaryCharacterStatistic, init_args=[ ('long_name', unicode), ('short_name', unicode), ('description', unicode), ('minimum', int), ('maximum', int), ], ) class SecondaryCharacterStatistic(AbstractCharacterStatistic): def __init__(self, name, description, unit, mean, sd, stat_modifiers, minimum=None, maximum=None): AbstractCharacterStatistic.__init__(self, description=description, minimum=minimum, maximum=maximum) self.name = name self.unit = unit self.mean = mean self.sd = sd self.stat_modifiers = stat_modifiers SerializableRegistry.registerClass( 'SecondaryCharacterStatistic', SecondaryCharacterStatistic, init_args=[ ('name', unicode), ('description', unicode), ('unit', unicode), ('mean', float), ('sd', float), ('stat_modifiers', dict), ('minimum', float), ('maximum', float), ], ) class AbstractStatisticValue(object): __metaclass__ = ABCMeta @abstractmethod def __init__(self, statistic_type, character): self.statistic_type = statistic_type self.character = weakref(character) class PrimaryStatisticValue(AbstractStatisticValue): def value(): def fget(self): return self._value def fset(self, new_value): assert 0 <= new_value <= 100 self._value = new_value def __init__(self, statistic_type, character, value): AbstractStatisticValue.__init__(self, statistic_type=statistic_type, character=character) self._value = None self.value = value class SecondaryStatisticValue(AbstractStatisticValue): def normalized_value(): def fget(self): return self._normalized_value def fset(self, new_value): self._normalized_value = new_value statistic_type = self.statistic_type mean = statistic_type.mean sd = statistic_type.sd self._value = self.calculate_value(mean, sd, new_value) return locals() normalized_value = property(**normalized_value()) def value(): def fget(self): return self._value def fset(self, new_value): self._value = new_value statistic_type = self.statistic_type mean = statistic_type.mean sd = statistic_type.sd self._normalized_value = self.calculate_value(mean, sd, new_value) return locals() value = property(**value()) def __init__(self, statistic_type, character): AbstractStatisticValue.__init__(self, statistic_type=statistic_type, character=character) mean = statistic_type.mean sd = statistic_type.sd normalized_value = self.derive_value(normalized=True) self._normalized_value = normalized_value self._value = self.calculate_value(mean, sd, normalized_value) def derive_value(self, normalized=True): """ Derive the current value """ statistic_type = self.statistic_type stat_modifiers = statistic_type.stat_modifiers character = self.character() value = sum( character.statistics[name].value * modifier for name, modifier in stat_modifiers.items() ) assert 0 <= value <= 100 if not normalized: mean = statistic_type.mean sd = statistic_type.sd value = self.calculate_value(mean, sd, value) return value @staticmethod def calculate_value(mean, sd, normalized_value): value = sd * (normalized_value - 50) + mean return value @staticmethod def calculate_normalized_value(mean, sd, value): normalized_value = ((value - mean) / sd) + 50 return normalized_value