view src/parpg/characterstatistics.py @ 149:eab3e1e52497

Modified EquipmentSlot to display an image instead of a text. Added EquipmentGui class, which handles the equipment slots of the player screen. An EquipmentGui instance will be created in the InventoryGUI constructor. The initializeInventory method of the Hud class supplies the players inventory and equipment to the InventoryGUI constructor.
author KarstenBock@gmx.net
date Wed, 05 Oct 2011 11:04:39 +0200
parents 1fd2201f5c36
children 756ce052ac85
line wrap: on
line source

#   This program is free software: you can redistribute it and/or modify
#   it under the terms of the GNU General Public License as published by
#   the Free Software Foundation, either version 3 of the License, or
#   (at your option) any later version.

#   This program is distributed in the hope that it will be useful,
#   but WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#   GNU General Public License for more details.

#   You should have received a copy of the GNU General Public License
#   along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""
Provides classes that define character stats and traits.
"""

from abc import ABCMeta, abstractmethod
from weakref import ref as weakref

from .serializers import SerializableRegistry

class AbstractCharacterStatistic(object):
    __metaclass__ = ABCMeta
    
    @abstractmethod
    def __init__(self, description, minimum, maximum):
        self.description = description
        self.minimum = minimum
        self.maximum = maximum


class PrimaryCharacterStatistic(AbstractCharacterStatistic):
    def __init__(self, long_name, short_name, description, minimum=0,
                 maximum=100):
        AbstractCharacterStatistic.__init__(self, description=description,
                                            minimum=minimum, maximum=maximum)
        self.long_name = long_name
        self.short_name = short_name

SerializableRegistry.registerClass(
    'PrimaryCharacterStatistic',
    PrimaryCharacterStatistic,
    init_args=[
        ('long_name', unicode),
        ('short_name', unicode),
        ('description', unicode),
        ('minimum', int),
        ('maximum', int),
    ],
)


class SecondaryCharacterStatistic(AbstractCharacterStatistic):
    def __init__(self, name, description, unit, mean, sd, stat_modifiers,
                 minimum=None, maximum=None):
        AbstractCharacterStatistic.__init__(self, description=description,
                                            minimum=minimum, maximum=maximum)
        self.name = name
        self.unit = unit
        self.mean = mean
        self.sd = sd
        self.stat_modifiers = stat_modifiers

SerializableRegistry.registerClass(
    'SecondaryCharacterStatistic',
    SecondaryCharacterStatistic,
    init_args=[
        ('name', unicode),
        ('description', unicode),
        ('unit', unicode),
        ('mean', float),
        ('sd', float),
        ('stat_modifiers', dict),
        ('minimum', float),
        ('maximum', float),
    ],
)


class AbstractStatisticValue(object):
    __metaclass__ = ABCMeta
    
    @abstractmethod
    def __init__(self, statistic_type, character):
        self.statistic_type = statistic_type
        self.character = weakref(character)


class PrimaryStatisticValue(AbstractStatisticValue):
    def value():
        def fget(self):
            return self._value
        def fset(self, new_value):
            assert 0 <= new_value <= 100
            self._value = new_value
    
    def __init__(self, statistic_type, character, value):
        AbstractStatisticValue.__init__(self, statistic_type=statistic_type,
                                        character=character)
        self._value = None
        self.value = value


class SecondaryStatisticValue(AbstractStatisticValue):
    def normalized_value():
        def fget(self):
            return self._normalized_value
        def fset(self, new_value):
            self._normalized_value = new_value
            statistic_type = self.statistic_type
            mean = statistic_type.mean
            sd = statistic_type.sd
            self._value = self.calculate_value(mean, sd, new_value)
        return locals()
    normalized_value = property(**normalized_value())
    
    def value():
        def fget(self):
            return self._value
        def fset(self, new_value):
            self._value = new_value
            statistic_type = self.statistic_type
            mean = statistic_type.mean
            sd = statistic_type.sd
            self._normalized_value = self.calculate_value(mean, sd, new_value)
        return locals()
    value = property(**value())
    
    def __init__(self, statistic_type, character):
        AbstractStatisticValue.__init__(self, statistic_type=statistic_type,
                                        character=character)
        mean = statistic_type.mean
        sd = statistic_type.sd
        normalized_value = self.derive_value(normalized=True)
        self._normalized_value = normalized_value
        self._value = self.calculate_value(mean, sd, normalized_value)
    
    def derive_value(self, normalized=True):
        """
        Derive the current value 
        """
        statistic_type = self.statistic_type
        stat_modifiers = statistic_type.stat_modifiers
        character = self.character()
        
        value = sum(
            character.statistics[name].value * modifier for name, modifier in
                stat_modifiers.items()
        )
        assert 0 <= value <= 100
        if not normalized:
            mean = statistic_type.mean
            sd = statistic_type.sd
            value = self.calculate_value(mean, sd, value)
        return value
    
    @staticmethod
    def calculate_value(mean, sd, normalized_value):
        value = sd * (normalized_value - 50) + mean
        return value
    
    @staticmethod
    def calculate_normalized_value(mean, sd, value):
        normalized_value = ((value - mean) / sd) + 50
        return normalized_value