# HG changeset patch # User windel # Date 1356357810 -3600 # Node ID 6efbeb90377702b1db95396d86ae2fb3030b048c # Parent 3f772feb12efc901d8da1961991f1c41e9bb9a00 movage diff -r 3f772feb12ef -r 6efbeb903777 python/diagrameditor.py --- a/python/diagrameditor.py Mon Dec 24 13:57:00 2012 +0100 +++ b/python/diagrameditor.py Mon Dec 24 15:03:30 2012 +0100 @@ -43,7 +43,7 @@ self.delShort = QShortcut(QKeySequence.Delete, self) self._model = None self.treeView = QTreeView() - self.treeView.activated.connect(self.itemActivated) + self.treeView.clicked.connect(self.itemActivated) def itemActivated(self, idx): b = idx.internalPointer() s = b.scene() @@ -123,6 +123,8 @@ kind, name = name.split(':') pos = self.mapToScene(event.pos()) s = self.scene() + if not s: + return print(kind, 'name:', name) kind = getattr(diagramitems, kind) print(kind) diff -r 3f772feb12ef -r 6efbeb903777 python/diagramitems.py --- a/python/diagramitems.py Mon Dec 24 13:57:00 2012 +0100 +++ b/python/diagramitems.py Mon Dec 24 15:03:30 2012 +0100 @@ -320,8 +320,10 @@ p = QPointF(size.width(), size.height()) self.setPos(center - p / 2) def changeSize(self, w, h): - h = 20 if h < 20 else h - w = 40 if w < 40 else w + minw = 150 + minh = 50 + h = minh if h < minh else h + w = minw if w < minw else w self.setRect(0.0, 0.0, w, h) rect = self.label.boundingRect() self.label.setPos((w - rect.width()) / 2, (h - rect.height()) / 2) diff -r 3f772feb12ef -r 6efbeb903777 python/ide.py --- a/python/ide.py Mon Dec 24 13:57:00 2012 +0100 +++ b/python/ide.py Mon Dec 24 15:03:30 2012 +0100 @@ -1,3 +1,5 @@ +#!/usr/bin/python + import sys, os, base64 if sys.version_info.major != 3: print("Needs to be run in python version 3.x") @@ -7,7 +9,6 @@ from PyQt4.QtGui import * # Compiler imports: -sys.path.insert(0, '.') # Add current path to the path string from project import Project from ppci import Compiler from widgets import CodeEdit, AstViewer diff -r 3f772feb12ef -r 6efbeb903777 python/ppci/__init__.py --- a/python/ppci/__init__.py Mon Dec 24 13:57:00 2012 +0100 +++ b/python/ppci/__init__.py Mon Dec 24 15:03:30 2012 +0100 @@ -1,4 +1,6 @@ # File to make this directory a package. -from .compiler import Compiler +from .compilers import KsCompiler +version = '0.0.1' + diff -r 3f772feb12ef -r 6efbeb903777 python/ppci/assembler.py --- a/python/ppci/assembler.py Mon Dec 24 13:57:00 2012 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,354 +0,0 @@ -""" - Assembler code generation functions -""" - -from .errors import Error - -modrm = {'rax': 0, 'rbx': 1} - -# Table 3.1 of the intel manual: -# use REX.W on the table below: -regs64 = {'rax': 0,'rcx':1,'rdx':2,'rbx':3,'rsp':4,'rbp':5,'rsi':6,'rdi':7,'r8':0,'r9':1,'r10':2,'r11':3,'r12':4,'r13':5,'r14':6,'r15':7} -regs32 = {'eax': 0, 'ecx':1, 'edx':2, 'ebx': 3, 'esp': 4, 'ebp': 5, 'esi':6, 'edi':7} -regs8 = {'al':0,'cl':1,'dl':2,'bl':3,'ah':4,'ch':5,'dh':6,'bh':7} - -# Calculation of the rexb bit: -rexbit = {'rax': 0, 'rcx':0, 'rdx':0, 'rbx': 0, 'rsp': 0, 'rbp': 0, 'rsi':0, 'rdi':0,'r8':1,'r9':1,'r10':1,'r11':1,'r12':1,'r13':1,'r14':1,'r15':1} - -# Helper functions: -def imm64(x): - """ represent 64 bits integer in little endian 8 bytes""" - if x < 0: - x = x + (1 << 64) - x = x & 0xFFFFFFFFFFFFFFFF - return [ (x >> (p*8)) & 0xFF for p in range(8) ] - -def imm32(x): - """ represent 32 bits integer in little endian 4 bytes""" - if x < 0: - x = x + (1 << 32) - x = x & 0xFFFFFFFF - return [ (x >> (p*8)) & 0xFF for p in range(4) ] - -def imm8(x): - if x < 0: - x = x + (1 << 8) - x = x & 0xFF - return [ x ] - -def modrm(mod=0, rm=0, reg=0): - """ Construct the modrm byte from its components """ - assert(mod <= 3) - assert(rm <= 7) - assert(reg <= 7) - return (mod << 6) | (reg << 3) | rm - -def rex(w=0, r=0, x=0, b=0): - """ Create a REX prefix byte """ - assert(w <= 1) - assert(r <= 1) - assert(x <= 1) - assert(b <= 1) - return 0x40 | (w<<3) | (r<<2) | (x<<1) | b - -def sib(ss=0, index=0, base=0): - assert(ss <= 3) - assert(index <= 7) - assert(base <= 7) - return (ss << 6) | (index << 3) | base - -tttn = {'L':0xc,'G':0xf,'NE':0x5,'GE':0xd,'LE':0xe, 'E':0x4} - -# Actual instructions: -def nearjump(distance, condition=None): - """ jmp imm32 """ - lim = (1<<30) - if abs(distance) > lim: - Error('near jump cannot jump over more than {0} bytes'.format(lim)) - if condition: - if distance < 0: - distance -= 6 # Skip own instruction - opcode = 0x80 | tttn[condition] # Jcc imm32 - return [0x0F, opcode] + imm32(distance) - else: - if distance < 0: - distance -= 5 # Skip own instruction - return [ 0xE9 ] + imm32(distance) - -def shortjump(distance, condition=None): - """ jmp imm8 """ - lim = 118 - if abs(distance) > lim: - Error('short jump cannot jump over more than {0} bytes'.format(lim)) - if distance < 0: - distance -= 2 # Skip own instruction - if condition: - opcode = 0x70 | tttn[condition] # Jcc rel8 - else: - opcode = 0xeb # jmp rel8 - return [opcode] + imm8(distance) - -# Helper that determines jump type: -def reljump(distance): - if abs(distance) < 110: - return shortjump(distance) - else: - return nearjump(distance) - -def push(reg): - if reg in regs64: - if rexbit[reg] == 1: - return [0x41, 0x50 + regs64[reg]] - else: - return [0x50 + regs64[reg]] - else: - Error('push for {0} not implemented'.format(reg)) - -def pop(reg): - if reg in regs64: - if rexbit[reg] == 1: - rexprefix = rex(b=1) - opcode = 0x58 + regs64[reg] - return [rexprefix, opcode] - else: - opcode = 0x58 + regs64[reg] - return [ opcode ] - else: - Error('pop for {0} not implemented'.format(reg)) - -def INT(number): - opcode = 0xcd - return [opcode] + imm8(number) - -def syscall(): - return [0x0F, 0x05] - -def call(distance): - if type(distance) is int: - return [0xe8]+imm32(distance) - elif type(distance) is str and distance in regs64: - reg = distance - opcode = 0xFF # 0xFF /2 == call r/m64 - mod_rm = modrm(mod=3, reg=2, rm=regs64[reg]) - if rexbit[reg] == 1: - rexprefix = rex(b=rexbit[reg]) - return [rexprefix, opcode, mod_rm] - else: - return [opcode, mod_rm] - else: - Error('Cannot call to {0}'.format(distance)) - -def ret(): - return [ 0xc3 ] - -def increg64(reg): - assert(reg in regs64) - rexprefix = rex(w=1, b=rexbit[reg]) - opcode = 0xff - mod_rm = modrm(mod=3, rm=regs64[reg]) - return [rexprefix, opcode, mod_rm] - -def prepost8(r8, rm8): - assert(r8 in regs8) - pre = [] - if type(rm8) is list: - # TODO: merge mem access with prepost for 64 bits - if len(rm8) == 1: - base, = rm8 - if type(base) is str and base in regs64: - assert(not base in ['rbp', 'rsp', 'r12', 'r13']) - mod_rm = modrm(mod=0, rm=regs64[base], reg=regs8[r8]) - if rexbit[base] == 1: - pre.append(rex(b=1)) - post = [mod_rm] - else: - Error('One arg of type {0} not implemented'.format(base)) - elif len(rm8) == 2: - base, offset = rm8 - assert(type(offset) is int) - assert(base in regs64) - - if base == 'rsp' or base == 'r12': - Error('Cannot use rsp or r12 as base yet') - if rexbit[base] == 1: - pre.append( rex(b=1) ) - mod_rm = modrm(mod=1, rm=regs64[base], reg=regs8[r8]) - post = [mod_rm] + imm8(offset) - else: - Error('not supporting prepost8 with list len {0}'.format(len(rm8))) - else: - Error('Not supporting move with reg8 {0}'.format(r8)) - return pre, post - -def prepost(r64, rm64): - assert(r64 in regs64) - if type(rm64) is list: - if len(rm64) == 3: - base, index, disp = rm64 - assert(base in regs64) - assert(index in regs64) - assert(type(disp) is int) - # Assert that no special cases are used: - # TODO: swap base and index to avoid special cases - # TODO: exploit special cases and make better code - assert(index != 'rsp') - - rexprefix = rex(w=1, r=rexbit[r64], x=rexbit[index], b=rexbit[base]) - # mod=1 and rm=4 indicates a SIB byte: [--][--]+imm8 - mod_rm = modrm(mod=1, rm=4, reg=regs64[r64]) - si_b = sib(ss=0, index=regs64[index], base=regs64[base]) - return [rexprefix], [mod_rm, si_b] + imm8(disp) - elif len(rm64) == 2: - base, offset = rm64 - assert(type(offset) is int) - if base == 'RIP': - # RIP pointer relative addressing mode! - rexprefix = rex(w=1, r=rexbit[r64]) - mod_rm = modrm(mod=0, rm=5, reg=regs64[r64]) - return [rexprefix], [mod_rm] + imm32(offset) - else: - assert(base in regs64) - - if base == 'rsp' or base == 'r12': - # extended function that uses SIB byte - rexprefix = rex(w=1, r=rexbit[r64], b=rexbit[base]) - # rm=4 indicates a SIB byte follows - mod_rm = modrm(mod=1, rm=4, reg=regs64[r64]) - # index=4 indicates that index is not used - si_b = sib(ss=0, index=4, base=regs64[base]) - return [rexprefix], [mod_rm, si_b] + imm8(offset) - else: - rexprefix = rex(w=1, r=rexbit[r64], b=rexbit[base]) - mod_rm = modrm(mod=1, rm=regs64[base], reg=regs64[r64]) - return [rexprefix], [mod_rm] + imm8(offset) - elif len(rm64) == 1: - offset = rm64[0] - if type(offset) is int: - rexprefix = rex(w=1, r=rexbit[r64]) - mod_rm = modrm(mod=0, rm=4,reg=regs64[r64]) - si_b = sib(ss=0, index=4,base=5) # 0x25 - return [rexprefix], [mod_rm, si_b] + imm32(offset) - else: - Error('Memory reference of type {0} not implemented'.format(offset)) - else: - Error('Memory reference not implemented') - elif rm64 in regs64: - rexprefix = rex(w=1, r=rexbit[r64], b=rexbit[rm64]) - mod_rm = modrm(3, rm=regs64[rm64], reg=regs64[r64]) - return [rexprefix], [mod_rm] - -def leareg64(rega, m): - opcode = 0x8d # lea r64, m - pre, post = prepost(rega, m) - return pre + [opcode] + post - -def mov(rega, regb): - if type(regb) is int: - pre = [rex(w=1, b=rexbit[rega])] - opcode = 0xb8 + regs64[rega] - post = imm64(regb) - elif type(regb) is str: - if regb in regs64: - opcode = 0x89 # mov r/m64, r64 - pre, post = prepost(regb, rega) - elif regb in regs8: - opcode = 0x88 # mov r/m8, r8 - pre, post = prepost8(regb, rega) - else: - Error('Unknown register {0}'.format(regb)) - elif type(rega) is str: - if rega in regs64: - opcode = 0x8b # mov r64, r/m64 - pre, post = prepost(rega, regb) - else: - Error('Unknown register {0}'.format(rega)) - else: - Error('Move of this kind {0}, {1} not implemented'.format(rega, regb)) - return pre + [opcode] + post - -def xorreg64(rega, regb): - rexprefix = rex(w=1, r=rexbit[regb], b=rexbit[rega]) - opcode = 0x31 # XOR r/m64, r64 - # Alternative is 0x33 XOR r64, r/m64 - mod_rm = modrm(3, rm=regs64[rega], reg=regs64[regb]) - return [rexprefix, opcode, mod_rm] - -# integer arithmatic: -def addreg64(rega, regb): - if regb in regs64: - pre, post = prepost(regb, rega) - opcode = 0x01 # ADD r/m64, r64 - return pre + [opcode] + post - elif type(regb) is int: - if regb < 100: - rexprefix = rex(w=1, b=rexbit[rega]) - opcode = 0x83 # add r/m, imm8 - mod_rm = modrm(3, rm=regs64[rega], reg=0) - return [rexprefix, opcode, mod_rm]+imm8(regb) - elif regb < (1<<31): - rexprefix = rex(w=1, b=rexbit[rega]) - opcode = 0x81 # add r/m64, imm32 - mod_rm = modrm(3, rm=regs64[rega], reg=0) - return [rexprefix, opcode, mod_rm]+imm32(regb) - else: - Error('Constant value too large!') - else: - Error('unknown second operand!'.format(regb)) - -def subreg64(rega, regb): - if regb in regs64: - pre, post = prepost(regb, rega) - opcode = 0x29 # SUB r/m64, r64 - return pre + [opcode] + post - elif type(regb) is int: - if regb < 100: - rexprefix = rex(w=1, b=rexbit[rega]) - opcode = 0x83 # sub r/m, imm8 - mod_rm = modrm(3, rm=regs64[rega], reg=5) - return [rexprefix, opcode, mod_rm]+imm8(regb) - elif regb < (1<<31): - rexprefix = rex(w=1, b=rexbit[rega]) - opcode = 0x81 # sub r/m64, imm32 - mod_rm = modrm(3, rm=regs64[rega], reg=5) - return [rexprefix, opcode, mod_rm]+imm32(regb) - else: - Error('Constant value too large!') - - else: - Error('unknown second operand!'.format(regb)) - -def idivreg64(reg): - rexprefix = rex(w=1, b=rexbit[reg]) - opcode = 0xf7 # IDIV r/m64 - mod_rm = modrm(3, rm=regs64[reg], reg=7) - return [rexprefix, opcode, mod_rm] - -def imulreg64_rax(reg): - rexprefix = rex(w=1, b=rexbit[reg]) - opcode = 0xf7 # IMUL r/m64 - mod_rm = modrm(3, rm=regs64[reg], reg=5) - return [rexprefix, opcode, mod_rm] - -def imulreg64(rega, regb): - pre, post = prepost(rega, regb) - opcode = 0x0f # IMUL r64, r/m64 - opcode2 = 0xaf - return pre + [opcode, opcode2] + post - -def cmpreg64(rega, regb): - if regb in regs64: - pre, post = prepost(regb, rega) - opcode = 0x39 # CMP r/m64, r64 - return pre + [opcode] + post - elif type(regb) is int: - rexprefix = rex(w=1, b=rexbit[rega]) - opcode = 0x83 # CMP r/m64, imm8 - mod_rm = modrm(3, rm=regs64[rega], reg=7) - return [rexprefix, opcode, mod_rm] + imm8(regb) - - else: - Error('not implemented cmp64') - -# Mapping that maps string names to the right functions: -opcodes = {'mov':(mov,2), 'lea':(leareg64,2), 'int':(INT,1), 'syscall':(syscall,0)} - diff -r 3f772feb12ef -r 6efbeb903777 python/ppci/backends/x86/assembler.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/python/ppci/backends/x86/assembler.py Mon Dec 24 15:03:30 2012 +0100 @@ -0,0 +1,354 @@ +""" + Assembler code generation functions +""" + +from .errors import Error + +modrm = {'rax': 0, 'rbx': 1} + +# Table 3.1 of the intel manual: +# use REX.W on the table below: +regs64 = {'rax': 0,'rcx':1,'rdx':2,'rbx':3,'rsp':4,'rbp':5,'rsi':6,'rdi':7,'r8':0,'r9':1,'r10':2,'r11':3,'r12':4,'r13':5,'r14':6,'r15':7} +regs32 = {'eax': 0, 'ecx':1, 'edx':2, 'ebx': 3, 'esp': 4, 'ebp': 5, 'esi':6, 'edi':7} +regs8 = {'al':0,'cl':1,'dl':2,'bl':3,'ah':4,'ch':5,'dh':6,'bh':7} + +# Calculation of the rexb bit: +rexbit = {'rax': 0, 'rcx':0, 'rdx':0, 'rbx': 0, 'rsp': 0, 'rbp': 0, 'rsi':0, 'rdi':0,'r8':1,'r9':1,'r10':1,'r11':1,'r12':1,'r13':1,'r14':1,'r15':1} + +# Helper functions: +def imm64(x): + """ represent 64 bits integer in little endian 8 bytes""" + if x < 0: + x = x + (1 << 64) + x = x & 0xFFFFFFFFFFFFFFFF + return [ (x >> (p*8)) & 0xFF for p in range(8) ] + +def imm32(x): + """ represent 32 bits integer in little endian 4 bytes""" + if x < 0: + x = x + (1 << 32) + x = x & 0xFFFFFFFF + return [ (x >> (p*8)) & 0xFF for p in range(4) ] + +def imm8(x): + if x < 0: + x = x + (1 << 8) + x = x & 0xFF + return [ x ] + +def modrm(mod=0, rm=0, reg=0): + """ Construct the modrm byte from its components """ + assert(mod <= 3) + assert(rm <= 7) + assert(reg <= 7) + return (mod << 6) | (reg << 3) | rm + +def rex(w=0, r=0, x=0, b=0): + """ Create a REX prefix byte """ + assert(w <= 1) + assert(r <= 1) + assert(x <= 1) + assert(b <= 1) + return 0x40 | (w<<3) | (r<<2) | (x<<1) | b + +def sib(ss=0, index=0, base=0): + assert(ss <= 3) + assert(index <= 7) + assert(base <= 7) + return (ss << 6) | (index << 3) | base + +tttn = {'L':0xc,'G':0xf,'NE':0x5,'GE':0xd,'LE':0xe, 'E':0x4} + +# Actual instructions: +def nearjump(distance, condition=None): + """ jmp imm32 """ + lim = (1<<30) + if abs(distance) > lim: + Error('near jump cannot jump over more than {0} bytes'.format(lim)) + if condition: + if distance < 0: + distance -= 6 # Skip own instruction + opcode = 0x80 | tttn[condition] # Jcc imm32 + return [0x0F, opcode] + imm32(distance) + else: + if distance < 0: + distance -= 5 # Skip own instruction + return [ 0xE9 ] + imm32(distance) + +def shortjump(distance, condition=None): + """ jmp imm8 """ + lim = 118 + if abs(distance) > lim: + Error('short jump cannot jump over more than {0} bytes'.format(lim)) + if distance < 0: + distance -= 2 # Skip own instruction + if condition: + opcode = 0x70 | tttn[condition] # Jcc rel8 + else: + opcode = 0xeb # jmp rel8 + return [opcode] + imm8(distance) + +# Helper that determines jump type: +def reljump(distance): + if abs(distance) < 110: + return shortjump(distance) + else: + return nearjump(distance) + +def push(reg): + if reg in regs64: + if rexbit[reg] == 1: + return [0x41, 0x50 + regs64[reg]] + else: + return [0x50 + regs64[reg]] + else: + Error('push for {0} not implemented'.format(reg)) + +def pop(reg): + if reg in regs64: + if rexbit[reg] == 1: + rexprefix = rex(b=1) + opcode = 0x58 + regs64[reg] + return [rexprefix, opcode] + else: + opcode = 0x58 + regs64[reg] + return [ opcode ] + else: + Error('pop for {0} not implemented'.format(reg)) + +def INT(number): + opcode = 0xcd + return [opcode] + imm8(number) + +def syscall(): + return [0x0F, 0x05] + +def call(distance): + if type(distance) is int: + return [0xe8]+imm32(distance) + elif type(distance) is str and distance in regs64: + reg = distance + opcode = 0xFF # 0xFF /2 == call r/m64 + mod_rm = modrm(mod=3, reg=2, rm=regs64[reg]) + if rexbit[reg] == 1: + rexprefix = rex(b=rexbit[reg]) + return [rexprefix, opcode, mod_rm] + else: + return [opcode, mod_rm] + else: + Error('Cannot call to {0}'.format(distance)) + +def ret(): + return [ 0xc3 ] + +def increg64(reg): + assert(reg in regs64) + rexprefix = rex(w=1, b=rexbit[reg]) + opcode = 0xff + mod_rm = modrm(mod=3, rm=regs64[reg]) + return [rexprefix, opcode, mod_rm] + +def prepost8(r8, rm8): + assert(r8 in regs8) + pre = [] + if type(rm8) is list: + # TODO: merge mem access with prepost for 64 bits + if len(rm8) == 1: + base, = rm8 + if type(base) is str and base in regs64: + assert(not base in ['rbp', 'rsp', 'r12', 'r13']) + mod_rm = modrm(mod=0, rm=regs64[base], reg=regs8[r8]) + if rexbit[base] == 1: + pre.append(rex(b=1)) + post = [mod_rm] + else: + Error('One arg of type {0} not implemented'.format(base)) + elif len(rm8) == 2: + base, offset = rm8 + assert(type(offset) is int) + assert(base in regs64) + + if base == 'rsp' or base == 'r12': + Error('Cannot use rsp or r12 as base yet') + if rexbit[base] == 1: + pre.append( rex(b=1) ) + mod_rm = modrm(mod=1, rm=regs64[base], reg=regs8[r8]) + post = [mod_rm] + imm8(offset) + else: + Error('not supporting prepost8 with list len {0}'.format(len(rm8))) + else: + Error('Not supporting move with reg8 {0}'.format(r8)) + return pre, post + +def prepost(r64, rm64): + assert(r64 in regs64) + if type(rm64) is list: + if len(rm64) == 3: + base, index, disp = rm64 + assert(base in regs64) + assert(index in regs64) + assert(type(disp) is int) + # Assert that no special cases are used: + # TODO: swap base and index to avoid special cases + # TODO: exploit special cases and make better code + assert(index != 'rsp') + + rexprefix = rex(w=1, r=rexbit[r64], x=rexbit[index], b=rexbit[base]) + # mod=1 and rm=4 indicates a SIB byte: [--][--]+imm8 + mod_rm = modrm(mod=1, rm=4, reg=regs64[r64]) + si_b = sib(ss=0, index=regs64[index], base=regs64[base]) + return [rexprefix], [mod_rm, si_b] + imm8(disp) + elif len(rm64) == 2: + base, offset = rm64 + assert(type(offset) is int) + if base == 'RIP': + # RIP pointer relative addressing mode! + rexprefix = rex(w=1, r=rexbit[r64]) + mod_rm = modrm(mod=0, rm=5, reg=regs64[r64]) + return [rexprefix], [mod_rm] + imm32(offset) + else: + assert(base in regs64) + + if base == 'rsp' or base == 'r12': + # extended function that uses SIB byte + rexprefix = rex(w=1, r=rexbit[r64], b=rexbit[base]) + # rm=4 indicates a SIB byte follows + mod_rm = modrm(mod=1, rm=4, reg=regs64[r64]) + # index=4 indicates that index is not used + si_b = sib(ss=0, index=4, base=regs64[base]) + return [rexprefix], [mod_rm, si_b] + imm8(offset) + else: + rexprefix = rex(w=1, r=rexbit[r64], b=rexbit[base]) + mod_rm = modrm(mod=1, rm=regs64[base], reg=regs64[r64]) + return [rexprefix], [mod_rm] + imm8(offset) + elif len(rm64) == 1: + offset = rm64[0] + if type(offset) is int: + rexprefix = rex(w=1, r=rexbit[r64]) + mod_rm = modrm(mod=0, rm=4,reg=regs64[r64]) + si_b = sib(ss=0, index=4,base=5) # 0x25 + return [rexprefix], [mod_rm, si_b] + imm32(offset) + else: + Error('Memory reference of type {0} not implemented'.format(offset)) + else: + Error('Memory reference not implemented') + elif rm64 in regs64: + rexprefix = rex(w=1, r=rexbit[r64], b=rexbit[rm64]) + mod_rm = modrm(3, rm=regs64[rm64], reg=regs64[r64]) + return [rexprefix], [mod_rm] + +def leareg64(rega, m): + opcode = 0x8d # lea r64, m + pre, post = prepost(rega, m) + return pre + [opcode] + post + +def mov(rega, regb): + if type(regb) is int: + pre = [rex(w=1, b=rexbit[rega])] + opcode = 0xb8 + regs64[rega] + post = imm64(regb) + elif type(regb) is str: + if regb in regs64: + opcode = 0x89 # mov r/m64, r64 + pre, post = prepost(regb, rega) + elif regb in regs8: + opcode = 0x88 # mov r/m8, r8 + pre, post = prepost8(regb, rega) + else: + Error('Unknown register {0}'.format(regb)) + elif type(rega) is str: + if rega in regs64: + opcode = 0x8b # mov r64, r/m64 + pre, post = prepost(rega, regb) + else: + Error('Unknown register {0}'.format(rega)) + else: + Error('Move of this kind {0}, {1} not implemented'.format(rega, regb)) + return pre + [opcode] + post + +def xorreg64(rega, regb): + rexprefix = rex(w=1, r=rexbit[regb], b=rexbit[rega]) + opcode = 0x31 # XOR r/m64, r64 + # Alternative is 0x33 XOR r64, r/m64 + mod_rm = modrm(3, rm=regs64[rega], reg=regs64[regb]) + return [rexprefix, opcode, mod_rm] + +# integer arithmatic: +def addreg64(rega, regb): + if regb in regs64: + pre, post = prepost(regb, rega) + opcode = 0x01 # ADD r/m64, r64 + return pre + [opcode] + post + elif type(regb) is int: + if regb < 100: + rexprefix = rex(w=1, b=rexbit[rega]) + opcode = 0x83 # add r/m, imm8 + mod_rm = modrm(3, rm=regs64[rega], reg=0) + return [rexprefix, opcode, mod_rm]+imm8(regb) + elif regb < (1<<31): + rexprefix = rex(w=1, b=rexbit[rega]) + opcode = 0x81 # add r/m64, imm32 + mod_rm = modrm(3, rm=regs64[rega], reg=0) + return [rexprefix, opcode, mod_rm]+imm32(regb) + else: + Error('Constant value too large!') + else: + Error('unknown second operand!'.format(regb)) + +def subreg64(rega, regb): + if regb in regs64: + pre, post = prepost(regb, rega) + opcode = 0x29 # SUB r/m64, r64 + return pre + [opcode] + post + elif type(regb) is int: + if regb < 100: + rexprefix = rex(w=1, b=rexbit[rega]) + opcode = 0x83 # sub r/m, imm8 + mod_rm = modrm(3, rm=regs64[rega], reg=5) + return [rexprefix, opcode, mod_rm]+imm8(regb) + elif regb < (1<<31): + rexprefix = rex(w=1, b=rexbit[rega]) + opcode = 0x81 # sub r/m64, imm32 + mod_rm = modrm(3, rm=regs64[rega], reg=5) + return [rexprefix, opcode, mod_rm]+imm32(regb) + else: + Error('Constant value too large!') + + else: + Error('unknown second operand!'.format(regb)) + +def idivreg64(reg): + rexprefix = rex(w=1, b=rexbit[reg]) + opcode = 0xf7 # IDIV r/m64 + mod_rm = modrm(3, rm=regs64[reg], reg=7) + return [rexprefix, opcode, mod_rm] + +def imulreg64_rax(reg): + rexprefix = rex(w=1, b=rexbit[reg]) + opcode = 0xf7 # IMUL r/m64 + mod_rm = modrm(3, rm=regs64[reg], reg=5) + return [rexprefix, opcode, mod_rm] + +def imulreg64(rega, regb): + pre, post = prepost(rega, regb) + opcode = 0x0f # IMUL r64, r/m64 + opcode2 = 0xaf + return pre + [opcode, opcode2] + post + +def cmpreg64(rega, regb): + if regb in regs64: + pre, post = prepost(regb, rega) + opcode = 0x39 # CMP r/m64, r64 + return pre + [opcode] + post + elif type(regb) is int: + rexprefix = rex(w=1, b=rexbit[rega]) + opcode = 0x83 # CMP r/m64, imm8 + mod_rm = modrm(3, rm=regs64[rega], reg=7) + return [rexprefix, opcode, mod_rm] + imm8(regb) + + else: + Error('not implemented cmp64') + +# Mapping that maps string names to the right functions: +opcodes = {'mov':(mov,2), 'lea':(leareg64,2), 'int':(INT,1), 'syscall':(syscall,0)} + diff -r 3f772feb12ef -r 6efbeb903777 python/ppci/compiler.py --- a/python/ppci/compiler.py Mon Dec 24 13:57:00 2012 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,52 +0,0 @@ -import hashlib -# Import compiler components: -from . import lexer -from .parser import Parser -from .codegenerator import CodeGenerator -from .nodes import ExportedSymbol -from .errors import CompilerException - -class Compiler: - versie = '0.9.3' - - def __repr__(self): - return 'LCFOS compiler {0}'.format(self.versie) - - def generateSignature(self, src): - return hashlib.md5(bytes(src,encoding='ascii')).hexdigest() - - def compilesource(self, src): - """ Front end that handles the stages: """ - self.errorlist = [] - # Pass 1: parsing and type checking - tokens = lexer.tokenize(src) # Lexical stage - p = Parser(tokens) - try: - ast = p.parseModule() # Parse a module - except CompilerException as e: - p.errorlist.append( (e.row, e.col, e.msg) ) - if len(p.errorlist) > 0: - self.errorlist = p.errorlist - return - # Pass 2: code generation - CodeGenerator().generatecode(ast) - # Attach a signature: - ast.signature = self.generateSignature(src) - # Generate exported symbols: - ast.exports = [] - for proc in ast.procs: - if proc.public: - sym = ExportedSymbol(proc.name, proc.typ) - sym.imageoffset = proc.entrypoint - ast.exports.append(sym) - return ast - - def compileProject(self, project): - mods = [] - for fname in project.files: - print('Compiling {0}...'.format(fname)) - source = project.loadProjectFile(fname) - mod = self.compilesource(source) - mods.append(mod) - return mods - diff -r 3f772feb12ef -r 6efbeb903777 python/ppci/compilers/__init__.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/python/ppci/compilers/__init__.py Mon Dec 24 15:03:30 2012 +0100 @@ -0,0 +1,4 @@ +# File to make this directory a package. + +from .kscompiler import KsCompiler + diff -r 3f772feb12ef -r 6efbeb903777 python/ppci/compilers/kscompiler.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/python/ppci/compilers/kscompiler.py Mon Dec 24 15:03:30 2012 +0100 @@ -0,0 +1,50 @@ +import hashlib +# Import compiler components: +from ..frontends.ks import Parser +from .codegenerator import CodeGenerator +from .nodes import ExportedSymbol +from .errors import CompilerException +from .. import version + +class KsCompiler: + def __repr__(self): + return 'LCFOS compiler {0}'.format(version) + + def generateSignature(self, src): + return hashlib.md5(bytes(src,encoding='ascii')).hexdigest() + + def compilesource(self, src): + """ Front end that handles the stages: """ + self.errorlist = [] + # Pass 1: parsing and type checking + tokens = lexer.tokenize(src) # Lexical stage + p = Parser(tokens) + try: + ast = p.parseModule() # Parse a module + except CompilerException as e: + p.errorlist.append( (e.row, e.col, e.msg) ) + if len(p.errorlist) > 0: + self.errorlist = p.errorlist + return + # Pass 2: code generation + CodeGenerator().generatecode(ast) + # Attach a signature: + ast.signature = self.generateSignature(src) + # Generate exported symbols: + ast.exports = [] + for proc in ast.procs: + if proc.public: + sym = ExportedSymbol(proc.name, proc.typ) + sym.imageoffset = proc.entrypoint + ast.exports.append(sym) + return ast + + def compileProject(self, project): + mods = [] + for fname in project.files: + print('Compiling {0}...'.format(fname)) + source = project.loadProjectFile(fname) + mod = self.compilesource(source) + mods.append(mod) + return mods + diff -r 3f772feb12ef -r 6efbeb903777 python/ppci/core/basicblock.py --- a/python/ppci/core/basicblock.py Mon Dec 24 13:57:00 2012 +0100 +++ b/python/ppci/core/basicblock.py Mon Dec 24 15:03:30 2012 +0100 @@ -1,5 +1,10 @@ + class BasicBlock(Value): + """ + A basic block represents a sequence of instructions without + jumps and branches. + """ def __init__(self): pass diff -r 3f772feb12ef -r 6efbeb903777 python/ppci/core/instruction.py --- a/python/ppci/core/instruction.py Mon Dec 24 13:57:00 2012 +0100 +++ b/python/ppci/core/instruction.py Mon Dec 24 15:03:30 2012 +0100 @@ -1,6 +1,10 @@ + from .value import Value class Instruction(Value): + """ + Base class for all instructions. + """ pass class CallInstruction(Instruction): diff -r 3f772feb12ef -r 6efbeb903777 python/ppci/frontends/ks/__init__.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/python/ppci/frontends/ks/__init__.py Mon Dec 24 15:03:30 2012 +0100 @@ -0,0 +1,3 @@ + +from parser import Parser + diff -r 3f772feb12ef -r 6efbeb903777 python/tests/main.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/python/tests/main.c Mon Dec 24 15:03:30 2012 +0100 @@ -0,0 +1,9 @@ + +#include + +int main() +{ + printf("Hello world\n"); + return 0; +} +