Mercurial > lcfOS
view python/stm32.py @ 151:afc8c0207984
Added ir code generator stub
author | Windel Bouwman |
---|---|
date | Fri, 01 Mar 2013 17:13:56 +0100 |
parents | 14e739ed03ab |
children | f254b87258e6 |
line wrap: on
line source
import time from devices import Device, registerDevice, STLinkException, Interface import stlink # F4 specifics: STM32_FLASH_BASE = 0x08000000 STM32_SRAM_BASE = 0x20000000 # flash registers: FLASH_F4_REGS_ADDR = 0x40023c00 FLASH_F4_KEYR = FLASH_F4_REGS_ADDR + 0x04 FLASH_F4_SR = FLASH_F4_REGS_ADDR + 0x0c FLASH_F4_CR = FLASH_F4_REGS_ADDR + 0x10 FLASH_F4_CR_START = 16 FLASH_F4_CR_LOCK = 31 FLASH_CR_PG = 0 FLASH_F4_CR_SER = 1 FLASH_CR_MER = 2 FLASH_F4_CR_SNB = 3 FLASH_F4_CR_SNB_MASK = 0x38 FLASH_F4_SR_BSY = 16 class Stm32F4(Device): """ Implementation of the specifics of the STM32F4xx device series. """ def __init__(self, iface): super().__init__(iface) def __str__(self): return 'STM32F4 device size=0x{1:X} id=0x{0:X}'.format(\ self.UID, self.FlashSize) def calculate_F4_sector(self, address): sectorstarts = [] a = STM32_FLASH_BASE for sectorsize in self.sectorsizes: sectorstarts.append(a) a += sectorsize # linear search: sec = 0 while sec < len(self.sectorsizes) and address >= sectorstarts[sec]: sec += 1 sec -= 1 # one back. return sec, self.sectorsizes[sec] def calcSectors(self, address, size): off = 0 sectors = [] while off < size: sectornum, sectorsize = self.calculate_F4_sector(address + off) sectors.append((sectornum, sectorsize)) off += sectorsize return sectors # Device registers: @property def UID(self): uid_base = 0x1FFF7A10 uid1 = self.iface.read_debug32(uid_base) uid2 = self.iface.read_debug32(uid_base + 0x4) uid3 = self.iface.read_debug32(uid_base + 0x8) return (uid3 << 64) | (uid2 << 32) | uid1 @property def FlashSize(self): f_id = self.iface.read_debug32(0x1FFF7A22) f_id = f_id >> 16 return f_id * 1024 @property def Running(self): return self.iface.Status == stlink.CORE_RUNNING # flashing commands: def writeFlash(self, address, content): flashsize = self.FlashSize pagesize = min(self.sectorsizes) # Check address range: if address < STM32_FLASH_BASE: raise STLinkException('Flashing below flash start') if address + len(content) > STM32_FLASH_BASE + flashsize: raise STLinkException('Flashing above flash size') if address & 1 == 1: raise STLinkException('Unaligned flash') if len(content) & 1 == 1: print('unaligned length, padding with zero') content += bytes([0]) if address & (pagesize - 1) != 0: raise STLinkException('Address not aligned with pagesize') # erase required space sectors = self.calcSectors(address, len(content)) print('erasing {0} sectors'.format(len(sectors))) for sector, secsize in sectors: print('erasing sector {0} of {1} bytes'.format(sector, secsize)) self.eraseFlashSector(sector) # program pages: self.unlockFlashIf() self.writeFlashCrPsiz(2) # writes are 32 bits aligned self.setFlashCrPg() print('writing {0} bytes'.format(len(content)), end='') offset = 0 t1 = time.time() while offset < len(content): size = len(content) - offset if size > 0x8000: size = 0x8000 chunk = content[offset:offset + size] while len(chunk) % 4 != 0: chunk = chunk + bytes([0]) # Use simple mem32 writes: self.iface.write_mem32(address + offset, chunk) offset += size print('.', end='', flush=True) t2 = time.time() print('Done!') print('Speed: {0} bytes/second'.format(len(content)/(t2-t1))) self.lockFlash() # verfify program: self.verifyFlash(address, content) def eraseFlashSector(self, sector): self.waitFlashBusy() self.unlockFlashIf() self.writeFlashCrSnb(sector) self.setFlashCrStart() self.waitFlashBusy() self.lockFlash() def eraseFlash(self): self.waitFlashBusy() self.unlockFlashIf() self.setFlashCrMer() self.setFlashCrStart() self.waitFlashBusy() self.clearFlashCrMer() self.lockFlash() def verifyFlash(self, address, content): device_content = self.readFlash(address, len(content)) ok = content == device_content print('Verify:', ok) def readFlash(self, address, size): print('Reading {1} bytes from 0x{0:X}'.format(address, size), end='') offset = 0 tmp_size = 0x1800 t1 = time.time() image = bytes() while offset < size: # Correct for last page: if offset + tmp_size > size: tmp_size = size - offset # align size to 4 bytes: aligned_size = tmp_size while aligned_size % 4 != 0: aligned_size += 1 mem = self.iface.read_mem32(address + offset, aligned_size) image += mem[:tmp_size] # indicate progress: print('.', end='', flush=True) # increase for next piece: offset += tmp_size t2 = time.time() assert size == len(image) print('Done!') print('Speed: {0} bytes/second'.format(size/(t2-t1))) return image def waitFlashBusy(self): """ block until flash operation completes. """ while self.isFlashBusy(): pass def isFlashLocked(self): cr = self.readFlashCr() mask = 1 << FLASH_F4_CR_LOCK return cr & mask == mask def unlockFlashIf(self): FLASH_KEY1, FLASH_KEY2 = 0x45670123, 0xcdef89ab if self.isFlashLocked(): self.iface.write_debug32(FLASH_F4_KEYR, FLASH_KEY1) self.iface.write_debug32(FLASH_F4_KEYR, FLASH_KEY2) if self.isFlashLocked(): raise STLinkException('Failed to unlock') def lockFlash(self): x = self.readFlashCr() | (1 << FLASH_F4_CR_LOCK) self.writeFlashCr(x) def readFlashSr(self): return self.iface.read_debug32(FLASH_F4_SR) def readFlashCr(self): return self.iface.read_debug32(FLASH_F4_CR) def writeFlashCr(self, x): self.iface.write_debug32(FLASH_F4_CR, x) def writeFlashCrSnb(self, sector): x = self.readFlashCr() x &= ~FLASH_F4_CR_SNB_MASK x |= sector << FLASH_F4_CR_SNB x |= 1 << FLASH_F4_CR_SER self.writeFlashCr(x) def setFlashCrMer(self): x = self.readFlashCr() x |= 1 << FLASH_CR_MER self.writeFlashCr(x) def setFlashCrPg(self): x = self.readFlashCr() x |= 1 << FLASH_CR_PG self.writeFlashCr(x) def writeFlashCrPsiz(self, n): x = self.readFlashCr() x &= (0x3 << 8) x |= n << 8 self.writeFlashCr(x) def clearFlashCrMer(self): x = self.readFlashCr() x &= ~(1 << FLASH_CR_MER) self.writeFlashCr(x) def setFlashCrStart(self): x = self.readFlashCr() x |= 1 << FLASH_F4_CR_START self.writeFlashCr(x) def isFlashBusy(self): mask = 1 << FLASH_F4_SR_BSY sr = self.readFlashSr() # Check for error bits: errorbits = {} errorbits[7] = 'Programming sequence error' errorbits[6] = 'Programming parallelism error' errorbits[5] = 'Programming alignment error' errorbits[4] = 'Write protection error' errorbits[1] = 'Operation error' #errorbits[0] = 'End of operation' for bit, msg in errorbits.items(): if sr & (1 << bit) == (1 << bit): raise STLinkException(msg) return sr & mask == mask @registerDevice(0x10016413) class Stm32F40x(Stm32F4): """ STM32F40x and STM32F41x device series """ def __init__(self, iface): super().__init__(iface) # Assert the proper size for this device: assert self.FlashSize == 0x100000 """ from 0x8000000 to 0x80FFFFF 4 sectors of 0x4000 (16 kB) 1 sector of 0x10000 (64 kB) 7 of 0x20000 (128 kB) """ self.sectorsizes = [0x4000] * 4 + [0x10000] + [0x20000] * 7