Mercurial > lcfOS
view python/ppci/c3/analyse.py @ 302:2ef2247f8dda
Added screenshot application
author | Windel Bouwman |
---|---|
date | Fri, 06 Dec 2013 12:09:35 +0100 |
parents | 6753763d3bec |
children | 0615b5308710 |
line wrap: on
line source
import logging from .visitor import Visitor from .astnodes import * from .scope import * class C3Pass: def __init__(self, diag): self.diag = diag self.logger = logging.getLogger('c3') self.ok = True self.visitor = Visitor() def error(self, msg, loc=None): self.ok = False self.diag.error(msg, loc) def visit(self, pkg, pre, post): self.visitor.visit(pkg, pre, post) class AddScope(C3Pass): """ Scope is attached to the correct modules. """ def addScope(self, pkg): self.logger.info('Adding scoping to package {}'.format(pkg.name)) # Prepare top level scope and set scope to all objects: self.scopeStack = [topScope] modScope = Scope(self.CurrentScope) self.scopeStack.append(modScope) self.visit(pkg, self.enterScope, self.quitScope) assert len(self.scopeStack) == 2 return self.ok @property def CurrentScope(self): return self.scopeStack[-1] def addSymbol(self, sym): if self.CurrentScope.hasSymbol(sym.name): self.error('Redefinition of {0}'.format(sym.name), sym.loc) else: self.CurrentScope.addSymbol(sym) def enterScope(self, sym): # Distribute the scope: sym.scope = self.CurrentScope # Add symbols to current scope: if isinstance(sym, Symbol) or isinstance(sym, DefinedType): self.addSymbol(sym) # Create subscope: if type(sym) in [Package, Function]: newScope = Scope(self.CurrentScope) self.scopeStack.append(newScope) sym.innerScope = self.CurrentScope def quitScope(self, sym): # Pop out of scope: if type(sym) in [Package, Function]: self.scopeStack.pop(-1) class Analyzer(C3Pass): """ Context handling is done here. Scope is attached to the correct modules. This class checks names and references. """ def analyzePackage(self, pkg, packageDict): self.ok = True # Prepare top level scope and set scope to all objects: self.logger.info('Resolving imports for package {}'.format(pkg.name)) # Handle imports: for i in pkg.imports: if i not in packageDict: self.error('Cannot import {}'.format(i)) continue ip = packageDict[i] pkg.scope.addSymbol(ip) fr = FixRefs(self.diag) fr.fixRefs(pkg) return self.ok and fr.ok class FixRefs(C3Pass): def fixRefs(self, pkg): self.ok = True self.logger.info('Resolving references for {}'.format(pkg.name)) self.visitor.visit(pkg, self.findRefs) # Reference fixups: def resolveDesignator(self, d, scope): assert isinstance(d, Designator), type(d) assert type(scope) is Scope if scope.hasSymbol(d.tname): s = scope.getSymbol(d.tname) if isinstance(d, ImportDesignator): if s.innerScope.hasSymbol(d.vname): return s.innerScope.getSymbol(d.vname) else: s.addRef(None) # TODO: fix this? return s self.error('Cannot resolve name {0}'.format(d.tname), d.loc) def resolveType(self, t, scope): if type(t) is PointerType: t.ptype = self.resolveType(t.ptype, scope) return t elif type(t) is StructureType: offset = 0 for mem in t.mems: mem.offset = offset mem.typ = self.resolveType(mem.typ, scope) offset += theType(mem.typ).bytesize t.bytesize = offset return t elif isinstance(t, Designator): t = self.resolveDesignator(t, scope) if t: return self.resolveType(t, scope) elif isinstance(t, Type): # Already resolved?? return t else: raise Exception('Error resolving type {} {}'.format(t, type(t))) def findRefs(self, sym): if type(sym) is Constant or isinstance(sym, Variable): sym.typ = self.resolveType(sym.typ, sym.scope) elif type(sym) is TypeCast: sym.to_type = self.resolveType(sym.to_type, sym.scope) elif type(sym) is VariableUse: sym.target = self.resolveDesignator(sym.target, sym.scope) elif type(sym) is FunctionCall: varuse = sym.proc print(varuse) if type(varuse) is VariableUse: sym.proc = self.resolveDesignator(varuse.target, sym.scope) elif type(sym) is Function: # Checkup function type: ft = sym.typ ft.returntype = self.resolveType(ft.returntype, sym.scope) ft.parametertypes = [self.resolveType(pt, sym.scope) for pt in ft.parametertypes] # Mark local variables: for d in sym.declarations: if isinstance(d, Variable): d.isLocal = True elif type(sym) is DefinedType: sym.typ = self.resolveType(sym.typ, sym.scope) # Type checking: def theType(t): """ Recurse until a 'real' type is found """ if type(t) is DefinedType: return theType(t.typ) return t def equalTypes(a, b): """ Compare types a and b for structural equavalence. """ # Recurse into named types: a, b = theType(a), theType(b) if type(a) is type(b): if type(a) is BaseType: return a.name == b.name elif type(a) is PointerType: return equalTypes(a.ptype, b.ptype) elif type(a) is StructureType: if len(a.mems) != len(b.mems): return False return all(equalTypes(am.typ, bm.typ) for am, bm in zip(a.mems, b.mems)) else: raise NotImplementedError( 'Type compare for {} not implemented'.format(type(a))) return False def canCast(fromT, toT): fromT = theType(fromT) toT = theType(toT) if isinstance(fromT, PointerType) and isinstance(toT, PointerType): return True elif fromT is intType and isinstance(toT, PointerType): return True return False def expectRval(s): # TODO: solve this better s.expect_rvalue = True class TypeChecker(C3Pass): def checkPackage(self, pkg): self.logger.info('Type checking {}'.format(pkg.name)) self.ok = True self.visit(pkg, None, self.check2) return self.ok def check2(self, sym): if type(sym) in [IfStatement, WhileStatement]: if not equalTypes(sym.condition.typ, boolType): msg = 'Condition must be of type {}'.format(boolType) self.error(msg, sym.condition.loc) elif type(sym) is Assignment: l, r = sym.lval, sym.rval if not equalTypes(l.typ, r.typ): msg = 'Cannot assign {} to {}'.format(r.typ, l.typ) self.error(msg, sym.loc) if not l.lvalue: self.error('No valid lvalue {}'.format(l), l.loc) #if sym.rval.lvalue: # self.error('Right hand side must be an rvalue', sym.rval.loc) expectRval(sym.rval) elif type(sym) is ReturnStatement: pass elif type(sym) is FunctionCall: # Check arguments: ngiv = len(sym.args) ptypes = sym.proc.typ.parametertypes nreq = len(ptypes) if ngiv != nreq: self.error('Function {2}: {0} arguments required, {1} given'.format(nreq, ngiv, sym.proc.name), sym.loc) else: for a, at in zip(sym.args, ptypes): expectRval(a) if not equalTypes(a.typ, at): self.error('Got {0}, expected {1}'.format(a.typ, at), a.loc) # determine return type: sym.typ = sym.proc.typ.returntype elif type(sym) is VariableUse: sym.lvalue = True assert isinstance(sym.target, Variable), sym.target sym.typ = sym.target.typ elif type(sym) is Literal: sym.lvalue = False if type(sym.val) is int: sym.typ = intType elif type(sym.val) is float: sym.typ = doubleType elif type(sym.val) is bool: sym.typ = boolType else: raise Exception('Unknown literal type'.format(sym.val)) elif type(sym) is Unop: if sym.op == '&': sym.typ = PointerType(sym.a.typ) sym.lvalue = False else: raise Exception('Unknown unop {0}'.format(sym.op)) elif type(sym) is Deref: # pointer deref sym.lvalue = True # check if the to be dereferenced variable is a pointer type: ptype = theType(sym.ptr.typ) if type(ptype) is PointerType: sym.typ = ptype.ptype else: self.error('Cannot dereference non-pointer type {}'.format(ptype), sym.loc) sym.typ = intType elif type(sym) is FieldRef: basetype = sym.base.typ sym.lvalue = sym.base.lvalue basetype = theType(basetype) if type(basetype) is StructureType: if basetype.hasField(sym.field): sym.typ = basetype.fieldType(sym.field) else: self.error('{} does not contain field {}'.format(basetype, sym.field), sym.loc) sym.typ = intType else: self.error('Cannot select field {} of non-structure type {}'.format(sym.field, basetype), sym.loc) sym.typ = intType elif type(sym) is Binop: sym.lvalue = False if sym.op in ['+', '-', '*', '/', '<<', '>>', '|', '&']: expectRval(sym.a) expectRval(sym.b) if equalTypes(sym.a.typ, sym.b.typ): if equalTypes(sym.a.typ, intType): sym.typ = sym.a.typ else: self.error('Can only add integers', sym.loc) sym.typ = intType else: # assume void here? TODO: throw exception! sym.typ = intType self.error('Types unequal {} != {}'.format(sym.a.typ, sym.b.typ), sym.loc) elif sym.op in ['>', '<', '==', '<=', '>=', '!=']: expectRval(sym.a) expectRval(sym.b) sym.typ = boolType if not equalTypes(sym.a.typ, sym.b.typ): self.error('Types unequal {} != {}'.format(sym.a.typ, sym.b.typ), sym.loc) elif sym.op in ['or', 'and']: sym.typ = boolType if not equalTypes(sym.a.typ, boolType): self.error('Must be {0}'.format(boolType), sym.a.loc) if not equalTypes(sym.b.typ, boolType): self.error('Must be {0}'.format(boolType), sym.b.loc) else: raise Exception('Unknown binop {0}'.format(sym.op)) elif isinstance(sym, Variable): # check initial value type: # TODO pass elif type(sym) is TypeCast: if canCast(sym.a.typ, sym.to_type): sym.typ = sym.to_type else: self.error('Cannot cast {} to {}'.format(sym.a.typ, sym.to_type), sym.loc) sym.typ = intType elif type(sym) is Constant: if not equalTypes(sym.typ, sym.value.typ): self.error('Cannot assign {0} to {1}'.format(sym.value.typ, sym.typ), sym.loc) elif type(sym) in [CompoundStatement, Package, Function, FunctionType, ExpressionStatement, DefinedType]: pass else: raise NotImplementedError('Unknown type check {0}'.format(sym))