Mercurial > lcfOS
view python/other/integration_methods.py @ 382:0c44e494ef58
Made lexer more generic
author | Windel Bouwman |
---|---|
date | Sun, 27 Apr 2014 12:24:21 +0200 |
parents | 7b38782ed496 |
children |
line wrap: on
line source
import sys from random import random import numpy as np import pylab import time import scipy.integrate """ This script compares different methods to solve an ODE. The solved system consists of: y_dot = f(y, t, p) y0 where y: the state vector of the system y0: the initial state of the system y_dot: the derivatives of the state vector f: the function that returns the derivatives. t: the time instant p: the parameters of the system """ def func(y, t, parameters): """ The example system is a bouncing point mass on a hunt-cossley surface. State vector: y[0] = height y[1] = vertical momentum y_dot[0] = velocity y_dot[1] = force """ # Step 1: extract the states into variables: h = y[0] p = y[1] mass = parameters[0] Kp_floor = parameters[1] Kd_floor = parameters[2] # Step 2: Calculate model: v = p / mass # Ground reaction force: if h > 0: F = 0.0 else: F = -h * Kp_floor # Gravity: F += -9.81 * mass y_dot = np.array([v, F], dtype=np.float) return y_dot parameters = np.array([3, 50000, 3000], dtype=np.float) y0 = np.array([1, 0], dtype=np.float) # Start at 1 meter, with 0 momentum class SCIPY: def __init__(self, dt): self.dt = dt def name(self): return "scipy.integrate" def integrate(self, f, y0, parameters, endtime): timevector = np.arange(0.0, endtime, self.dt) states = scipy.integrate.odeint(f, y0, timevector, args=(parameters,)) return timevector, states class RK4: def __init__(self, dt): self.dt = dt def name(self): return "RK4" def integrate(self, f, y0, parameters, endtime): print(y0, parameters) t = 0.0 states = [] timevector = [] state = y0 states.append(state) timevector.append(t) while t < endtime: #### Runge Kutta integration: k1 = func(state, t, parameters) k2 = func(state + 0.5*self.dt*k1, t, parameters) k3 = func(state + 0.5*self.dt*k1, t, parameters) k4 = func(state + self.dt*k3, t, parameters) newstate = state + (self.dt/6.0)*(k1+2*k2+2*k3+k4) t += self.dt state = newstate states.append(state) timevector.append(t) return np.array(timevector, dtype=np.float), np.array(states, dtype=np.float) class BDFfixed: def __init__(self, order): self.order = order def name(self): return "BDF" def integrate(self, f, y0, parameters, endtime): timevector = [] states = [] timevector.append(0.0) states.append(y0) t = 0.0 h = 0.01 state = y0 while t < endtime: if len(states) < 4: k1 = func(state, t, parameters) k2 = func(state + 0.5*h*k1, t, parameters) k3 = func(state + 0.5*h*k1, t, parameters) k4 = func(state + h*k3, t, parameters) newstate = state + (h/6.0)*(k1+2*k2+2*k3+k4) state = newstate t += h timevector.append(t) states.append(state) else: t += h if np.max(state) > 10: break hyn = (11.0/6.0)*states[-1] + (-3)*states[-2] + (3/2)*states[-3] + (-1/3)*states[-4] state = state + hyn timevector.append(t) states.append(state) return np.array(timevector, dtype=np.float), np.array(states, dtype=np.float) class WODE: def __init__(self): pass def integrate(self, f, y0, parameters, endtime): timevector = [] states = [] timevector.append(0.0) states.append(y0) return np.array(timevector, dtype=np.float), np.array(states, dtype=np.float) class DOPRI45: def __init__(self): pass def name(self): return "DOPRI" def integrate(self, f, y0, parameters, endtime): timevector = [] states = [] timevector.append(0.0) states.append(y0) y = y0 t = 0.0 h = 0.01 iteration = 0 while t < endtime: k1 = h*f(y, t, parameters) k2 = h*f(y + (1.0/5.0)*k1, t + (1.0/5.0)*h, parameters) k3 = h*f(y + (3.0/40.0)*k1 + (9.0/40.0)*k2, t + (3.0/10.0)*h, parameters) k4 = h*f(y + (44.0/45.0)*k1 - (56.0/15.0)*k2 + (32.0/9.0)*k3, t + (4.0/5.0)*h, parameters) k5 = h*f(y + (19372.0/6561.0)*k1 - (25360.0/2187.0)*k2 + (64448.0/6561.0)*k3 - (212.0/729.0)*k4, t + (8.0/9.0)*h, parameters) k6 = h*f(y + (9017.0/3168.0)*k1 - (355.0/33.0)*k2 - (46732.0/5247.0)*k3 + (49.0/176.0)*k4 - (5103.0/18656.0)*k5, t + h, parameters) k7 = h*f(y + (35.0/384.0)*k1 + (500.0/1113.0)*k3 + (125.0/192.0)*k4 - (2187.0/6784.0)*k5 + (11.0/84.0)*k6, t + h, parameters) y_next = y + (35.0/384.0)*k1 + (500.0/1113.0)*k3 + (125.0/192.0)*k4 - (2187.0/6784.0)*k5 + (11.0/84.0)*k6 z_next = y + (5179.0/57600.0)*k1 + (7571.0/16695.0)*k3 + (393.0/640.0)*k4 - (92097.0/339200.0)*k5 + (187.0/2100.0)*k6 + (1.0/40.0)*k7 error = np.linalg.norm(y_next - z_next) #print(error, t) eps = 0.01 if error < eps: y = y_next t = t + h timevector.append(t) states.append(y) s = ((eps*h)/(2*error)) ** (1.0/5.0) h = s * h if h < 1e-5: h = 1e-5 iteration += 1 if iteration > 10000: break return np.array(timevector, dtype=np.float), np.array(states, dtype=np.float) rk4 = RK4(0.01) sp = SCIPY(0.01) wode = BDFfixed(4) dopri = DOPRI45() methods = [rk4, sp, dopri] pylab.figure() pylab.hold(True) for method in methods: t, s = method.integrate(func, y0, parameters, 10) print(t.shape, s.shape) pylab.plot(t, s[:,0], 'x-', label=method.name()) pylab.legend() pylab.show()